IEEE Trans Pattern Anal Mach Intell. 2014 Oct;36(10):1975-87. doi: 10.1109/TPAMI.2014.2314663.
Recent evaluation [2], [13] of representative background subtraction techniques demonstrated that there are still considerable challenges facing these methods. Challenges in realistic environment include illumination change causing complex intensity variation, background motions (trees, waves, etc.) whose magnitude can be greater than those of the foreground, poor image quality under low light, camouflage, etc. Existing methods often handle only part of these challenges; we address all these challenges in a unified framework which makes little specific assumption of the background. We regard the observed image sequence as being made up of the sum of a low-rank background matrix and a sparse outlier matrix and solve the decomposition using the Robust Principal Component Analysis method. Our contribution lies in dynamically estimating the support of the foreground regions via a motion saliency estimation step, so as to impose spatial coherence on these regions. Unlike smoothness constraint such as MRF, our method is able to obtain crisply defined foreground regions, and in general, handles large dynamic background motion much better. Furthermore, we also introduce an image alignment step to handle camera jitter. Extensive experiments on benchmark and additional challenging data sets demonstrate that our method works effectively on a wide range of complex scenarios, resulting in best performance that significantly outperforms many state-of-the-art approaches.
最近的评估[2],[13]表明,代表性的背景减除技术仍然面临着相当大的挑战。现实环境中的挑战包括光照变化引起的复杂强度变化、背景运动(树木、波浪等),其幅度可能大于前景的幅度、低光照下的图像质量差、伪装等。现有的方法通常只处理这些挑战的一部分;我们在一个统一的框架中解决所有这些挑战,该框架对背景几乎没有具体的假设。我们将观察到的图像序列视为由低秩背景矩阵和稀疏异常值矩阵的和组成,并使用鲁棒主成分分析方法求解分解。我们的贡献在于通过运动显著度估计步骤动态估计前景区域的支持,从而对这些区域施加空间一致性。与平滑度约束(如 MRF)不同,我们的方法能够获得清晰定义的前景区域,并且通常能够更好地处理大的动态背景运动。此外,我们还引入了图像对齐步骤来处理相机抖动。在基准和其他具有挑战性的数据集上进行的广泛实验表明,我们的方法在广泛的复杂场景中有效,从而实现了最佳性能,显著优于许多最先进的方法。