Suppr超能文献

基于时空稀疏子空间聚类的背景-前景建模。

Background-Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering.

出版信息

IEEE Trans Image Process. 2017 Dec;26(12):5840-5854. doi: 10.1109/TIP.2017.2746268. Epub 2017 Aug 29.

Abstract

Background estimation and foreground segmentation are important steps in many high-level vision tasks. Many existing methods estimate background as a low-rank component and foreground as a sparse matrix without incorporating the structural information. Therefore, these algorithms exhibit degraded performance in the presence of dynamic backgrounds, photometric variations, jitter, shadows, and large occlusions. We observe that these backgrounds often span multiple manifolds. Therefore, constraints that ensure continuity on those manifolds will result in better background estimation. Hence, we propose to incorporate the spatial and temporal sparse subspace clustering into the robust principal component analysis (RPCA) framework. To that end, we compute a spatial and temporal graph for a given sequence using motion-aware correlation coefficient. The information captured by both graphs is utilized by estimating the proximity matrices using both the normalized Euclidean and geodesic distances. The low-rank component must be able to efficiently partition the spatiotemporal graphs using these Laplacian matrices. Embedded with the RPCA objective function, these Laplacian matrices constrain the background model to be spatially and temporally consistent, both on linear and nonlinear manifolds. The solution of the proposed objective function is computed by using the linearized alternating direction method with adaptive penalty optimization scheme. Experiments are performed on challenging sequences from five publicly available datasets and are compared with the 23 existing state-of-the-art methods. The results demonstrate excellent performance of the proposed algorithm for both the background estimation and foreground segmentation.

摘要

背景估计和前景分割是许多高级视觉任务中的重要步骤。许多现有的方法将背景估计为低秩分量,将前景估计为稀疏矩阵,而没有结合结构信息。因此,这些算法在存在动态背景、光度变化、抖动、阴影和大遮挡的情况下表现出性能下降。我们观察到这些背景通常跨越多个流形。因此,确保在这些流形上连续的约束将导致更好的背景估计。因此,我们建议将空间和时间稀疏子空间聚类纳入鲁棒主成分分析 (RPCA) 框架中。为此,我们使用运动感知相关系数为给定序列计算空间和时间图。这两个图捕获的信息用于通过使用归一化欧几里得和测地距离来估计接近度矩阵。低秩分量必须能够使用这些拉普拉斯矩阵有效地分割时空图。将这些拉普拉斯矩阵嵌入到 RPCA 目标函数中,约束背景模型在线性和非线性流形上具有空间和时间一致性。通过使用带有自适应惩罚优化方案的线性交替方向法来计算所提出的目标函数的解。在来自五个公开可用数据集的具有挑战性的序列上进行实验,并与 23 种现有的最先进方法进行比较。结果表明,该算法在背景估计和前景分割方面都具有出色的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验