Schütz Markus, Sakota Kenji, Moritz Raphael, Schmies Matthias, Ikeda Takamasa, Sekiya Hiroshi, Dopfer Otto
Institut für Optik und Atomare Physik, Technische Universität Berlin , D-10623 Berlin, Germany.
Department of Chemistry, Faculty of Sciences, and Department of Molecular Chemistry, Graduate School of Science, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
J Phys Chem A. 2015 Oct 1;119(39):10035-51. doi: 10.1021/acs.jpca.5b07408. Epub 2015 Sep 22.
Solvation of biomolecules by a hydrophilic and hydrophobic environment strongly affects their structure and function. Here, the structural, vibrational, and energetic properties of size-selected clusters of the microhydrated tryptamine cation with N2 ligands, TRA(+)-(H2O)m-(N2)n (m,n ≤ 3), are characterized by infrared photodissociation spectroscopy in the 2800-3800 cm(-1) range and dispersion-corrected density functional theory calculations at the ωB97X-D/cc-pVTZ level to investigate the simultaneous solvation of this prototypical neurotransmitter by dipolar water and quadrupolar N2 ligands. In the global minimum structure of TRA(+)-H2O generated by electron ionization, H2O is strongly hydrogen-bonded (H-bonded) as proton acceptor to the acidic indolic NH group. In the TRA(+)-H2O-(N2)n clusters, the weakly bonded N2 ligands do not affect the H-bonding motif of TRA(+)-H2O and are preferentially H-bonded to the OH groups of the H2O ligand, whereas stacking to the aromatic π electron system of the pyrrole ring of TRA(+) is less favorable. The natural bond orbital analysis reveals that the H-bond between the N2 ligand and the OH group of H2O cooperatively strengthens the adjacent H-bond between the indolic NH group of TRA(+) and H2O, while π stacking is slightly noncooperative. In the larger TRA(+)-(H2O)m clusters, the H2O ligands form a H-bonded solvent network attached to the indolic NH proton, again stabilized by strong cooperative effects arising from the nearby positive charge. Comparison with the corresponding neutral TRA-(H2O)m clusters illustrates the strong impact of the excess positive charge on the structure of the microhydration network.
生物分子在亲水性和疏水性环境中的溶剂化作用强烈影响其结构和功能。在此,通过2800 - 3800 cm(-1)范围内的红外光解离光谱以及在ωB97X-D/cc-pVTZ水平上的色散校正密度泛函理论计算,对具有N2配体的微水合色胺阳离子的尺寸选择簇TRA(+)-(H2O)m-(N2)n(m,n ≤ 3)的结构、振动和能量性质进行了表征,以研究这种典型神经递质被偶极水和四极N2配体同时溶剂化的情况。在通过电子电离产生的TRA(+)-H2O的全局最小结构中,H2O作为质子受体与酸性吲哚NH基团形成强氢键(H键)。在TRA(+)-H2O-(N2)n簇中,弱结合的N2配体不影响TRA(+)-H2O的氢键模式,并且优先与H2O配体的OH基团形成氢键,而与TRA(+)吡咯环的芳香π电子体系堆积则不太有利。自然键轨道分析表明,N2配体与H2O的OH基团之间的氢键协同增强了TRA(+)吲哚NH基团与H2O之间的相邻氢键,而π堆积则略有非协同性。在较大的TRA(+)-(H2O)m簇中,H2O配体形成一个附着在吲哚NH质子上的氢键溶剂网络,同样通过附近正电荷产生的强协同效应而稳定。与相应的中性TRA-(H2O)m簇的比较说明了过量正电荷对微水合网络结构的强烈影响。