Suppr超能文献

开放式识别的概率模型。

Probability Models for Open Set Recognition.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Nov;36(11):2317-24. doi: 10.1109/TPAMI.2014.2321392.

Abstract

Real-world tasks in computer vision often touch upon open set recognition: multi-class recognition with incomplete knowledge of the world and many unknown inputs. Recent work on this problem has proposed a model incorporating an open space risk term to account for the space beyond the reasonable support of known classes. This paper extends the general idea of open space risk limiting classification to accommodate non-linear classifiers in a multiclass setting. We introduce a new open set recognition model called compact abating probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical extreme value theory for score calibration with one-class and binary support vector machines. Our experiments show that the W-SVM is significantly better for open set object detection and OCR problems when compared to the state-of-the-art for the same tasks.

摘要

计算机视觉中的真实任务通常涉及开放式识别

在不完全了解世界和许多未知输入的情况下进行多类识别。最近关于这个问题的研究提出了一种模型,该模型结合了开放式风险项,以说明已知类别的合理支持之外的空间。本文将开放空间风险限制分类的一般思想扩展到多类设置中,以适应非线性分类器。我们引入了一种新的开放式识别模型,称为紧凑衰减概率 (CAP),其中类成员的概率随着点从已知数据向开放空间移动而降低(衰减)。我们表明,CAP 模型可提高多种算法的开放式识别能力。利用 CAP 公式,我们进一步描述了新颖的 Weibull 校准 SVM (W-SVM)算法,该算法将分位数校准的统计极值理论的有用属性与一类和二类支持向量机相结合。我们的实验表明,与同一任务的最新技术相比,W-SVM 在开放式对象检测和 OCR 问题上的表现明显更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验