Suppr超能文献

面向开集识别。

Toward open set recognition.

机构信息

Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St. NWL 209, Cambridge, MA 02138, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Jul;35(7):1757-72. doi: 10.1109/TPAMI.2012.256.

Abstract

To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of "closed set" recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is "open set" recognition, where incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires strong generalization. As a step toward a solution, we introduce a novel "1-vs-set machine," which sculpts a decision space from the marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.

摘要

迄今为止,计算机视觉中基于机器学习的识别算法的几乎所有实验评估都采用了“封闭集”识别的形式,即所有测试类别在训练时都是已知的。对于视觉应用来说,更现实的场景是“开放集”识别,在训练时对世界的了解并不完整,并且在测试期间可以向算法提交未知类别。本文探讨了开放集识别的本质,并将其定义形式化为约束最小化问题。由于需要强泛化,现有算法并不能很好地解决开放集识别问题。作为解决方案的一个步骤,我们引入了一种新颖的“1 对集机器”,它使用具有线性核的 1 类或二进制 SVM 的边缘距离来塑造决策空间。这种方法适用于计算机视觉中的几个不同应用程序,其中开放集识别是一个具有挑战性的问题,包括对象识别和人脸验证。我们在这项工作中都考虑了这两个方面,在 Caltech 256 和 ImageNet 数据集上进行了大规模的跨数据集实验,以及在 Labeled Faces in the Wild 数据集上进行了人脸匹配实验。实验结果突出了适应开放集评估的机器与用于相同任务的现有 1 类和二进制 SVM 相比的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验