IEEE Trans Pattern Anal Mach Intell. 2014 Dec;36(12):2353-66. doi: 10.1109/TPAMI.2014.2339851.
Low-dimensional representations are key to the success of many video classification algorithms. However, the commonly-used dimensionality reduction techniques fail to account for the fact that only part of the signal is shared across all the videos in one class. As a consequence, the resulting representations contain instance-specific information, which introduces noise in the classification process. In this paper, we introduce non-linear stationary subspace analysis: a method that overcomes this issue by explicitly separating the stationary parts of the video signal (i.e., the parts shared across all videos in one class), from its non-stationary parts (i.e., the parts specific to individual videos). Our method also encourages the new representation to be discriminative, thus accounting for the underlying classification problem. We demonstrate the effectiveness of our approach on dynamic texture recognition, scene classification and action recognition.
低维表示是许多视频分类算法成功的关键。然而,常用的降维技术未能考虑到这样一个事实,即在一个类别的所有视频中,只有部分信号是共享的。因此,得到的表示包含特定于实例的信息,这会在分类过程中引入噪声。在本文中,我们引入了非线性平稳子空间分析:一种通过显式分离视频信号的平稳部分(即在一个类别的所有视频中共享的部分)和非平稳部分(即特定于单个视频的部分)来克服这个问题的方法。我们的方法还鼓励新的表示具有判别力,从而考虑到潜在的分类问题。我们在动态纹理识别、场景分类和动作识别方面展示了我们方法的有效性。