Yang Xiaodong, Tian Yingli
Department of Electrical Engineering, The City College of New York, CUNY.
Pattern Recognit Lett. 2013 Jul 15;34(10):1130-1137. doi: 10.1016/j.patrec.2013.03.009.
In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions.
在本文中,我们提出了一种纹理表示框架,用于将局部纹理块映射到低维纹理子空间。在自然纹理图像中,纹理基元与多种因素相互纠缠,如旋转、缩放、视角变化、光照变化和非刚性表面变形。将局部纹理块映射到低维子空间可以减轻或消除这些由几何和光度变换引起的不良变化因素。我们观察到,基于子空间嵌入的纹理表示对图像变形具有很强的抵抗力,同时,比传统表示更具独特性和紧凑性。我们研究了线性和非线性嵌入方法,包括主成分分析(PCA)、线性判别分析(LDA)和局部保留投影(LPP),以计算基本纹理子空间。在基准数据集上进行纹理分类的实验表明,所提出的子空间嵌入表示在特征维度少得多的情况下取得了最优结果。