Suppr超能文献

使用子空间嵌入的纹理表示

Texture Representations Using Subspace Embeddings.

作者信息

Yang Xiaodong, Tian Yingli

机构信息

Department of Electrical Engineering, The City College of New York, CUNY.

出版信息

Pattern Recognit Lett. 2013 Jul 15;34(10):1130-1137. doi: 10.1016/j.patrec.2013.03.009.

Abstract

In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions.

摘要

在本文中,我们提出了一种纹理表示框架,用于将局部纹理块映射到低维纹理子空间。在自然纹理图像中,纹理基元与多种因素相互纠缠,如旋转、缩放、视角变化、光照变化和非刚性表面变形。将局部纹理块映射到低维子空间可以减轻或消除这些由几何和光度变换引起的不良变化因素。我们观察到,基于子空间嵌入的纹理表示对图像变形具有很强的抵抗力,同时,比传统表示更具独特性和紧凑性。我们研究了线性和非线性嵌入方法,包括主成分分析(PCA)、线性判别分析(LDA)和局部保留投影(LPP),以计算基本纹理子空间。在基准数据集上进行纹理分类的实验表明,所提出的子空间嵌入表示在特征维度少得多的情况下取得了最优结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2ab/3661301/d6d8a06873f1/nihms461760f1.jpg

相似文献

1
Texture Representations Using Subspace Embeddings.使用子空间嵌入的纹理表示
Pattern Recognit Lett. 2013 Jul 15;34(10):1130-1137. doi: 10.1016/j.patrec.2013.03.009.
2
Subspace learning from image gradient orientations.基于图像梯度方向的子空间学习。
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2454-66. doi: 10.1109/TPAMI.2012.40.
3
Kernel Embedding Multiorientation Local Pattern for Image Representation.核嵌入多方向局部模式的图像表示。
IEEE Trans Cybern. 2018 Apr;48(4):1124-1135. doi: 10.1109/TCYB.2017.2682272. Epub 2017 Mar 28.
6
Local Feature Discriminant Projection.局部特征判别投影。
IEEE Trans Pattern Anal Mach Intell. 2016 Sep;38(9):1908-14. doi: 10.1109/TPAMI.2015.2497686. Epub 2015 Nov 4.
8
Face recognition using laplacianfaces.使用拉普拉斯脸进行人脸识别。
IEEE Trans Pattern Anal Mach Intell. 2005 Mar;27(3):328-340. doi: 10.1109/TPAMI.2005.55.

本文引用的文献

3
Performance evaluation of local descriptors.局部描述符的性能评估
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1615-30. doi: 10.1109/TPAMI.2005.188.
4
A sparse texture representation using local affine regions.一种使用局部仿射区域的稀疏纹理表示。
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1265-78. doi: 10.1109/TPAMI.2005.151.
5
Face recognition using laplacianfaces.使用拉普拉斯脸进行人脸识别。
IEEE Trans Pattern Anal Mach Intell. 2005 Mar;27(3):328-340. doi: 10.1109/TPAMI.2005.55.
6
Nonlinear dimensionality reduction by locally linear embedding.通过局部线性嵌入进行非线性降维
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验