Suppr超能文献

STEFF:用于室外场景动态纹理分类的时空高效神经网络

STEFF: Spatio-temporal EfficientNet for dynamic texture classification in outdoor scenes.

作者信息

Mouhcine Kaoutar, Zrira Nabila, Elafi Issam, Benmiloud Ibtissam, Khan Haris Ahmad

机构信息

MECAtronique Team, CPS2E Laboratory, National Superior School of Mines Rabat, 10080, Morocco.

ADOS Team, LISTD Laboratory, National Superior School of Mines Rabat, 10080, Morocco.

出版信息

Heliyon. 2024 Feb 5;10(3):e25360. doi: 10.1016/j.heliyon.2024.e25360. eCollection 2024 Feb 15.

Abstract

In recent years, dynamic texture classification has become an important task for computer vision. This is a challenging task due to the unknown spatial and temporal nature of dynamic texture. To overcome this challenge, we investigate the potential of deep learning approaches and propose a novel spatio-temporal approach (STEFF) for dynamic texture classification that combines the representation power of motion and appearance using the difference and average operators between video sequences. In this work, we extract deep texture features from outdoor scenes and integrate both spatial and temporal features into a pre-trained Convolutional Neural Network model, namely EfficientNet, with a fine-tuning and regularization process. The robustness of the proposed approach is reflected in the promising result when comparing our method to the proposed architectures and other existing models. The experimental results on three datasets demonstrate the effectiveness and efficiency of the proposed approach. The accuracy percentages are 95.95%, 94.09%, and 98.01% on the outdoor scenes of Yupenn, DynTex++, and Yupenn++ datasets, respectively.

摘要

近年来,动态纹理分类已成为计算机视觉的一项重要任务。由于动态纹理在空间和时间上具有未知特性,这是一项具有挑战性的任务。为了克服这一挑战,我们研究了深度学习方法的潜力,并提出了一种新颖的时空方法(STEFF)用于动态纹理分类,该方法利用视频序列之间的差分和平均算子,结合运动和外观的表示能力。在这项工作中,我们从室外场景中提取深度纹理特征,并通过微调与正则化过程,将空间和时间特征整合到一个预训练的卷积神经网络模型,即EfficientNet中。将我们的方法与所提出的架构和其他现有模型进行比较时,所提方法的稳健性体现在其令人满意的结果中。在三个数据集上的实验结果证明了所提方法的有效性和高效性。在Yupenn、DynTex++和Yupenn++数据集的室外场景上,准确率分别为95.95%、94.09%和98.01%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/11637050/5f1aff792659/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验