Suppr超能文献

凸判别式多任务聚类。

Convex Discriminative Multitask Clustering.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):28-40. doi: 10.1109/TPAMI.2014.2343221.

Abstract

Multitask clustering tries to improve the clustering performance of multiple tasks simultaneously by taking their relationship into account. Most existing multitask clustering algorithms fall into the type of generative clustering, and none are formulated as convex optimization problems. In this paper, we propose two convex Discriminative Multitask Clustering (DMTC) objectives to address the problems. The first one aims to learn a shared feature representation, which can be seen as a technical combination of the convex multitask feature learning and the convex Multiclass Maximum Margin Clustering (M3C). The second one aims to learn the task relationship, which can be seen as a combination of the convex multitask relationship learning and M3C. The objectives of the two algorithms are solved in a uniform procedure by the efficient cutting-plane algorithm and further unified in the Bayesian framework. Experimental results on a toy problem and two benchmark data sets demonstrate the effectiveness of the proposed algorithms.

摘要

多任务聚类通过考虑任务之间的关系,试图同时提高多个任务的聚类性能。大多数现有的多任务聚类算法都属于生成式聚类,且没有一个被表述为凸优化问题。在本文中,我们提出了两种凸判别式多任务聚类(DMTC)目标来解决这些问题。第一个目标旨在学习一个共享的特征表示,这可以被看作是凸多任务特征学习和凸多类最大间隔聚类(M3C)的技术组合。第二个目标旨在学习任务之间的关系,这可以被看作是凸多任务关系学习和 M3C 的组合。这两个算法的目标通过高效的切割平面算法以统一的步骤求解,并在贝叶斯框架中进一步统一。在一个玩具问题和两个基准数据集上的实验结果表明了所提出算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验