Suppr超能文献

多视图聚类综述

A Survey on Multi-View Clustering.

作者信息

Chao Guoqing, Sun Shiliang, Bi Jinbo

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, PR China.

School of Computer Science and Technology, East China Normal University, Shanghai, Shanghai 200062 China.

出版信息

IEEE Trans Artif Intell. 2021 Apr;2(2):146-168. doi: 10.1109/tai.2021.3065894. Epub 2021 Apr 5.

Abstract

Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In discriminative class, based on the way of view integration, we split it further into five groups: Common Eigenvector Matrix, Common Coefficient Matrix, Common Indicator Matrix, Direct Combination and Combination After Projection. Furthermore, we relate MVC to other topics: multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multi-view datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination.

摘要

聚类是一种机器学习范式,即将样本主体划分为若干组,使得同一组中的主体与其他组中的主体更相似。随着信息获取技术的进步,样本常常可以从不同角度或采用不同模态进行观察,从而生成多视图数据。多视图聚类利用多视图数据将主体聚类为子组,已经引起了越来越多的关注。尽管多视图聚类方法发展迅速,但尚未有足够的综述来总结和分析当前的进展。因此,我们提出了一种新颖的多视图聚类方法分类法。与其他机器学习方法类似,我们将它们分为生成式和判别式两类。在判别式类别中,基于视图整合的方式,我们将其进一步细分为五组:公共特征向量矩阵、公共系数矩阵、公共指示矩阵、直接组合和投影后组合。此外,我们将多视图聚类与其他主题联系起来:多视图表示、集成聚类、多任务聚类、多视图监督和半监督学习。为从业者详细阐述了几个具有代表性的实际应用。介绍了一些基准多视图数据集,并对每组中的代表性多视图聚类算法进行了实证评估,以分析它们在基准数据集上的表现。为了推动多视图聚类方法的未来发展,我们指出了几个可能需要进一步研究和深入探讨的开放问题。

相似文献

1
A Survey on Multi-View Clustering.多视图聚类综述
IEEE Trans Artif Intell. 2021 Apr;2(2):146-168. doi: 10.1109/tai.2021.3065894. Epub 2021 Apr 5.
2
Towards a unified framework for graph-based multi-view clustering.面向基于图的多视图聚类的统一框架。
Neural Netw. 2024 May;173:106197. doi: 10.1016/j.neunet.2024.106197. Epub 2024 Feb 23.
4
Projective Incomplete Multi-View Clustering.投影不完全多视图聚类
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10539-10551. doi: 10.1109/TNNLS.2023.3242473. Epub 2024 Aug 5.
5
Sequential multi-view subspace clustering.序贯多视角子空间聚类。
Neural Netw. 2022 Nov;155:475-486. doi: 10.1016/j.neunet.2022.09.007. Epub 2022 Sep 12.
6
Fast Self-Guided Multi-View Subspace Clustering.快速自引导多视图子空间聚类
IEEE Trans Image Process. 2023;32:6514-6525. doi: 10.1109/TIP.2023.3261746. Epub 2023 Dec 1.
7
Balance guided incomplete multi-view spectral clustering.平衡引导的不完全多视图谱聚类。
Neural Netw. 2023 Sep;166:260-272. doi: 10.1016/j.neunet.2023.07.022. Epub 2023 Jul 20.
9
Multi-View Subspace Clustering via Structured Multi-Pathway Network.基于结构化多路径网络的多视图子空间聚类
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):7244-7250. doi: 10.1109/TNNLS.2022.3213374. Epub 2024 May 2.
10
Adaptive latent similarity learning for multi-view clustering.多视图聚类的自适应潜在相似性学习。
Neural Netw. 2020 Jan;121:409-418. doi: 10.1016/j.neunet.2019.09.013. Epub 2019 Oct 3.

引用本文的文献

3
How our understanding of memory replay evolves.记忆回放的理解是如何发展的。
J Neurophysiol. 2023 Mar 1;129(3):552-580. doi: 10.1152/jn.00454.2022. Epub 2023 Feb 8.
5
VH: View Variation and View Heredity for Incomplete Multiview Clustering.VH:用于不完全多视图聚类的视图变化与视图遗传
IEEE Trans Artif Intell. 2021 Jan 18;1(3):233-247. doi: 10.1109/TAI.2021.3052425. eCollection 2020 Dec.

本文引用的文献

2
Efficient and Effective Regularized Incomplete Multi-View Clustering.高效且有效的正则化不完全多视图聚类
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2634-2646. doi: 10.1109/TPAMI.2020.2974828. Epub 2021 Jul 1.
3
Partition level multiview subspace clustering.分区级多视图子空间聚类。
Neural Netw. 2020 Feb;122:279-288. doi: 10.1016/j.neunet.2019.10.010. Epub 2019 Nov 6.
4
Robust Graph Learning From Noisy Data.从噪声数据中进行稳健的图学习。
IEEE Trans Cybern. 2020 May;50(5):1833-1843. doi: 10.1109/TCYB.2018.2887094. Epub 2019 Jan 8.
5
Late Fusion Incomplete Multi-View Clustering.晚期融合不完全多视图聚类
IEEE Trans Pattern Anal Mach Intell. 2019 Oct;41(10):2410-2423. doi: 10.1109/TPAMI.2018.2879108. Epub 2018 Nov 1.
6
Generalized Latent Multi-View Subspace Clustering.广义潜在多视图子空间聚类
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):86-99. doi: 10.1109/TPAMI.2018.2877660. Epub 2018 Oct 23.
8
Binary Multi-View Clustering.二元多视图聚类
IEEE Trans Pattern Anal Mach Intell. 2019 Jul;41(7):1774-1782. doi: 10.1109/TPAMI.2018.2847335. Epub 2018 Jun 18.
9
VIGAN: Missing View Imputation with Generative Adversarial Networks.VIGAN:使用生成对抗网络进行缺失视图插补
Proc IEEE Int Conf Big Data. 2017;2017:766-775. doi: 10.1109/BigData.2017.8257992. Epub 2018 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验