Suppr超能文献

新型多任务条件神经网络代理模型在昂贵优化中的应用

Novel Multitask Conditional Neural-Network Surrogate Models for Expensive Optimization.

出版信息

IEEE Trans Cybern. 2022 May;52(5):3984-3997. doi: 10.1109/TCYB.2020.3014126. Epub 2022 May 19.

Abstract

Multiple-related tasks can be learned simultaneously by sharing information among tasks to avoid tabula rasa learning and to improve performance in the no transfer case (i.e., when each task learns in isolation). This study investigates multitask learning with conditional neural process (CNP) networks and proposes two multitask learning network models on the basis of CNPs, namely, the one-to-many multitask CNP (OMc-MTCNP) and the many-to-many MTCNP (MMc-MTCNP). Compared with existing multitask models, the proposed models add an extensible correlation learning layer to learn the correlation among tasks. Moreover, the proposed multitask CNP (MTCNP) networks are regarded as surrogate models and applied to a Bayesian optimization framework to replace the Gaussian process (GP) to avoid the complex covariance calculation. The proposed Bayesian optimization framework simultaneously infers multiple tasks by utilizing the possible dependencies among them to share knowledge across tasks. The proposed surrogate models augment the observed dataset with a number of related tasks to estimate model parameters confidently. The experimental studies under several scenarios indicate that the proposed algorithms are competitive in performance compared with GP-, single-task-, and other multitask model-based Bayesian optimization methods.

摘要

多任务可以通过在任务之间共享信息来同时学习,以避免盲目学习,并在没有转移的情况下(即每个任务独立学习)提高性能。本研究通过条件神经过程(CNP)网络进行多任务学习,并在 CNP 的基础上提出了两种多任务学习网络模型,即一对一多任务 CNP(OMc-MTCNP)和多对多多任务 CNP(MMc-MTCNP)。与现有的多任务模型相比,所提出的模型添加了可扩展的相关学习层,以学习任务之间的相关性。此外,所提出的多任务 CNP(MTCNP)网络被视为替代模型,并应用于贝叶斯优化框架中,以替代高斯过程(GP),从而避免复杂的协方差计算。所提出的贝叶斯优化框架通过利用它们之间可能的依赖关系,同时推断多个任务,从而在任务之间共享知识。所提出的替代模型利用多个相关任务来扩充观测数据集,从而自信地估计模型参数。在几种情况下的实验研究表明,与 GP、单任务和其他基于多任务模型的贝叶斯优化方法相比,所提出的算法在性能上具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验