Suppr超能文献

贝叶斯非参数方法在部分可观察强化学习中的应用。

Bayesian Nonparametric Methods for Partially-Observable Reinforcement Learning.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):394-407. doi: 10.1109/TPAMI.2013.191.

Abstract

Making intelligent decisions from incomplete information is critical in many applications: for example, robots must choose actions based on imperfect sensors, and speech-based interfaces must infer a user's needs from noisy microphone inputs. What makes these tasks hard is that often we do not have a natural representation with which to model the domain and use for choosing actions; we must learn about the domain's properties while simultaneously performing the task. Learning a representation also involves trade-offs between modeling the data that we have seen previously and being able to make predictions about new data. This article explores learning representations of stochastic systems using Bayesian nonparametric statistics. Bayesian nonparametric methods allow the sophistication of a representation to scale gracefully with the complexity in the data. Our main contribution is a careful empirical evaluation of how representations learned using Bayesian nonparametric methods compare to other standard learning approaches, especially in support of planning and control. We show that the Bayesian aspects of the methods result in achieving state-of-the-art performance in decision making with relatively few samples, while the nonparametric aspects often result in fewer computations. These results hold across a variety of different techniques for choosing actions given a representation.

摘要

从不完全信息中做出明智的决策在许多应用中至关重要

例如,机器人必须根据不完善的传感器选择动作,而基于语音的接口必须从嘈杂的麦克风输入中推断用户的需求。这些任务之所以困难,是因为我们通常没有自然的表示来对领域进行建模并用于选择动作;我们必须在执行任务的同时了解领域的属性。学习表示还涉及在对以前看到的数据进行建模和能够对新数据进行预测之间进行权衡。本文探讨了使用贝叶斯非参数统计来学习随机系统的表示。贝叶斯非参数方法允许表示的复杂性随着数据的复杂性而优雅地扩展。我们的主要贡献是对使用贝叶斯非参数方法学习的表示与其他标准学习方法进行了仔细的实证评估,特别是在支持规划和控制方面。我们表明,方法的贝叶斯方面导致在相对较少的样本下实现决策的最新性能,而非参数方面通常导致更少的计算。这些结果在各种不同的基于表示选择动作的技术中都成立。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验