Suppr超能文献

拓展主动推理的范畴:感知-行动循环中的更多内在动机

Expanding the Active Inference Landscape: More Intrinsic Motivations in the Perception-Action Loop.

作者信息

Biehl Martin, Guckelsberger Christian, Salge Christoph, Smith Simón C, Polani Daniel

机构信息

Araya Inc., Tokyo, Japan.

Computational Creativity Group, Department of Computing, Goldsmiths, University of London, London, United Kingdom.

出版信息

Front Neurorobot. 2018 Aug 30;12:45. doi: 10.3389/fnbot.2018.00045. eCollection 2018.

Abstract

Active inference is an ambitious theory that treats perception, inference, and action selection of autonomous agents under the heading of a single principle. It suggests biologically plausible explanations for many cognitive phenomena, including consciousness. In active inference, action selection is driven by an objective function that evaluates possible future actions with respect to current, inferred beliefs about the world. Active inference at its core is independent from extrinsic rewards, resulting in a high level of robustness across e.g., different environments or agent morphologies. In the literature, paradigms that share this independence have been summarized under the notion of intrinsic motivations. In general and in contrast to active inference, these models of motivation come without a commitment to particular inference and action selection mechanisms. In this article, we study if the inference and action selection machinery of active inference can also be used by alternatives to the originally included intrinsic motivation. The perception-action loop explicitly relates inference and action selection to the environment and agent memory, and is consequently used as foundation for our analysis. We reconstruct the active inference approach, locate the original formulation within, and show how alternative intrinsic motivations can be used while keeping many of the original features intact. Furthermore, we illustrate the connection to universal reinforcement learning by means of our formalism. Active inference research may profit from comparisons of the dynamics induced by alternative intrinsic motivations. Research on intrinsic motivations may profit from an additional way to implement intrinsically motivated agents that also share the biological plausibility of active inference.

摘要

主动推理是一种宏大的理论,它将自主智能体的感知、推理和行动选择置于单一原则之下。它为包括意识在内的许多认知现象提供了具有生物学合理性的解释。在主动推理中,行动选择由一个目标函数驱动,该函数根据当前关于世界的推断信念来评估可能的未来行动。主动推理的核心独立于外在奖励,从而在例如不同环境或智能体形态等方面具有高度的稳健性。在文献中,具有这种独立性的范式已在内在动机的概念下进行了总结。一般而言,与主动推理不同,这些动机模型并未承诺特定的推理和行动选择机制。在本文中,我们研究主动推理的推理和行动选择机制是否也能被最初包含的内在动机的替代方案所采用。感知 - 行动循环明确地将推理和行动选择与环境及智能体记忆联系起来,因此被用作我们分析的基础。我们重构主动推理方法,确定其中的原始表述,并展示如何在保持许多原始特征不变的情况下使用替代的内在动机。此外,我们通过形式主义阐述与通用强化学习的联系。主动推理研究可能会从对替代内在动机所引发的动态变化的比较中受益。内在动机研究可能会从一种额外的实现具有内在动机的智能体的方式中受益,这种方式也具有主动推理的生物学合理性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc2/6125413/e737ed072f0d/fnbot-12-00045-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验