IEEE Trans Pattern Anal Mach Intell. 2014 Jul;36(7):1414-27. doi: 10.1109/TPAMI.2013.244.
We address the problem of structure learning of human motion in order to recognize actions from a continuous monocular motion sequence of an arbitrary person from an arbitrary viewpoint. Human motion sequences are represented by multivariate time series in the joint-trajectories space. Under this structured time series framework, we first propose Kernelized Temporal Cut (KTC), an extension of previous works on change-point detection by incorporating Hilbert space embedding of distributions, to handle the nonparametric and high dimensionality issues of human motions. Experimental results demonstrate the effectiveness of our approach, which yields realtime segmentation, and produces high action segmentation accuracy. Second, a spatio-temporal manifold framework is proposed to model the latent structure of time series data. Then an efficient spatio-temporal alignment algorithm Dynamic Manifold Warping (DMW) is proposed for multivariate time series to calculate motion similarity between action sequences (segments). Furthermore, by combining the temporal segmentation algorithm and the alignment algorithm, online human action recognition can be performed by associating a few labeled examples from motion capture data. The results on human motion capture data and 3D depth sensor data demonstrate the effectiveness of the proposed approach in automatically segmenting and recognizing motion sequences, and its ability to handle noisy and partially occluded data, in the transfer learning module.
我们解决了人类运动结构学习的问题,以便从任意人的任意视角的连续单目运动序列中识别动作。人体运动序列在关节轨迹空间中表示为多元时间序列。在这个结构化的时间序列框架下,我们首先提出了核时变切割(KTC),这是对之前基于分布希尔伯特空间嵌入的变点检测工作的扩展,以处理非参数和高维人体运动问题。实验结果证明了我们的方法的有效性,它可以实时分割,并产生高动作分割精度。其次,提出了一种时空流形框架来建模时间序列数据的潜在结构。然后提出了一种有效的时空对齐算法动态流形变形(DMW),用于多元时间序列来计算动作序列(片段)之间的运动相似性。此外,通过结合时间分割算法和对齐算法,可以通过关联运动捕获数据中的几个标记示例来执行在线人体动作识别。在人体运动捕获数据和 3D 深度传感器数据上的结果表明,该方法在自动分割和识别运动序列方面的有效性,以及在迁移学习模块中处理噪声和部分遮挡数据的能力。