Suppr超能文献

使用可穿戴传感器进行运动动作的在线检测和分割。

On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.

机构信息

Creative Content Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.

出版信息

Sensors (Basel). 2018 Mar 19;18(3):913. doi: 10.3390/s18030913.

Abstract

In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.

摘要

在运动动作分析中,观察是理解动作质量的前提。本文介绍了一种使用可穿戴传感器检测和分割运动的新方法,以支持系统的观察。主要目标是为了方便分析,自动提供运动数据,这些数据根据阶段定义进行时间分类。为了明确分割,定义了运动模型作为具有边界状态的子运动序列。设计了一种基于深度神经网络的序列分类器来从连续传感器输入中检测运动。对两种运动(足球踢和双手球投掷)的评估验证了该方法能够成功地准确检测和分割运动。通过使用运动模型和序列分类器开发运动分析系统,我们表明该方法通过自动提供相关运动数据用于分析,对运动观察是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ac/5876520/01c11261a8f2/sensors-18-00913-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验