IEEE Trans Pattern Anal Mach Intell. 2014 Aug;36(8):1493-504. doi: 10.1109/TPAMI.2013.235.
This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression. We develop a novel two-stage algorithm that effectively maps low-quality depth maps to realistic face models. Each stage is targeted toward a certain type of noise. The first stage extracts sparse errors from depth patches through the data-driven local sparse coding, while the second stage smooths noise on the boundaries between patches and reconstructs the global shape by combining local shapes using our template-based surface refinement. Our approach does not require any markers or user interaction. We perform quantitative and qualitative evaluations on both synthetic and real test sets. Experimental results show that the proposed approach is able to produce high-resolution 3D face models with high accuracy, even if inputs are of low quality, and have large variations in viewpoint and face expression.
本文提出了一种新的方法,通过从廉价商品传感器获取的 RGBD 图像进行 3D 人脸重建。我们面临的挑战是:1)低分辨率深度图中存在大量随机噪声和损坏;2)姿态和面部表情存在高度可变性。我们开发了一种新颖的两阶段算法,可有效地将低质量的深度图映射到逼真的人脸模型。每个阶段都针对特定类型的噪声。第一阶段通过数据驱动的局部稀疏编码从深度图块中提取稀疏误差,而第二阶段通过使用基于模板的表面细化将局部形状组合在一起,在图块之间的边界上平滑噪声并重建全局形状。我们的方法不需要任何标记或用户交互。我们对合成和真实测试集进行了定量和定性评估。实验结果表明,即使输入质量较低,且视点和面部表情变化较大,所提出的方法也能够生成具有高精度的高分辨率 3D 人脸模型。