Saqlain Muhammad Adnan, Hussain Akhtar, Siddiq Mohammad, Ferreira Ary R, Leitão Alexandre A
Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Phys Chem Chem Phys. 2015 Oct 14;17(38):25403-10. doi: 10.1039/c5cp04113a.
Density functional theory calculations were performed to examine the formation of oxygen atom vacancies on three model surfaces namely, clean anatase TiO2(001) and, Au3 and Au10 clusters supported on anatase TiO2(001). On the Au/TiO2 systems, three different types of lattice oxygen atoms can be identified: the Ti-O-Au bridge, the Ti-O-Ti bridge in the perimeter of the Au cluster and the Ti-O-Ti bridge away from the Au cluster, the oxygen atoms on the clean surface. The variation in ΔG° with temperature for surface O vacancy formation was calculated for these three situations using total-energy, vibrational structure and optimized geometries of the material surfaces and the O2 molecule. The calculations reveal that the O defect formation on the clean anatase TiO2(001) surface seems very difficult due to the large positive value of ΔG° (290 kJ mol(-1)) from 0 to 650 K. However, the presence of the Au cluster on the TiO2 surface changes the surface chemistry of the TiO2 significantly. We observed that the trend in ΔG° variation for the vacancy formation from the Ti-O-Au bridge is the same as on Au3/TiO2 and Au10/TiO2 systems, almost constant with large positive values of ΔG° around 250 and 350 kJ mol(-1), respectively. The ΔG° for the perimeter defect formation (Ti-O-Ti bridge in the perimeter of the Au cluster) is smaller for Aun/TiO2 systems than the clean TiO2 surface, however, the vacancy formation is possible only for the Au10/TiO2 system (close to 506 K). Finally, extended calculations for other oxygen atoms on the Au10/TiO2 model reveal that the trend in ΔG° variation is similar for all the interface or perimeter O atoms around the Au cluster with marginal differences in the numerical value of ΔG°. Since, the surface O atoms are activated only in the presence of a particular sized Au, we propose that a Au catalyzed Mars-van Krevelen mechanism could be a possible reaction mechanism for CO oxidation on Au/TiO2 catalysts at slightly elevated temperatures.
进行了密度泛函理论计算,以研究在三个模型表面上氧原子空位的形成,这三个模型表面分别是清洁的锐钛矿型TiO₂(001)以及负载在锐钛矿型TiO₂(001)上的Au₃和Au₁₀团簇。在Au/TiO₂体系中,可以识别出三种不同类型的晶格氧原子:Ti-O-Au桥、Au团簇周边的Ti-O-Ti桥以及远离Au团簇的Ti-O-Ti桥,即清洁表面上的氧原子。利用材料表面和O₂分子的总能量、振动结构以及优化的几何结构,计算了这三种情况下表面O空位形成的ΔG°随温度的变化。计算结果表明,由于从0到650K时ΔG°的正值较大(290kJ mol⁻¹),在清洁的锐钛矿型TiO₂(001)表面上形成O缺陷似乎非常困难。然而,TiO₂表面上Au团簇的存在显著改变了TiO₂的表面化学性质。我们观察到,从Ti-O-Au桥形成空位时ΔG°变化的趋势与在Au₃/TiO₂和Au₁₀/TiO₂体系中相同,分别在约250和350kJ mol⁻¹附近具有较大正值且几乎恒定。对于Aun/TiO₂体系,在Au团簇周边形成缺陷(Au团簇周边的Ti-O-Ti桥)的ΔG°比清洁的TiO₂表面小,然而,空位形成仅在Au₁₀/TiO₂体系中才有可能(接近506K)。最后,对Au₁₀/TiO₂模型上其他氧原子的扩展计算表明,Au团簇周围所有界面或周边O原子的ΔG°变化趋势相似,只是数值上有微小差异。由于表面O原子仅在特定尺寸的Au存在时才被激活,我们提出Au催化的Mars-van Krevelen机制可能是在略高温度下Au/TiO₂催化剂上CO氧化的一种可能反应机制。