Suppr超能文献

使用自然语言处理和文本挖掘技术对创伤后应激障碍进行患者自我叙述的自动评估。

Automated Assessment of Patients' Self-Narratives for Posttraumatic Stress Disorder Screening Using Natural Language Processing and Text Mining.

机构信息

1 University of Twente, Enschede, Netherlands.

出版信息

Assessment. 2017 Mar;24(2):157-172. doi: 10.1177/1073191115602551. Epub 2016 Jul 28.

Abstract

Patients' narratives about traumatic experiences and symptoms are useful in clinical screening and diagnostic procedures. In this study, we presented an automated assessment system to screen patients for posttraumatic stress disorder via a natural language processing and text-mining approach. Four machine-learning algorithms-including decision tree, naive Bayes, support vector machine, and an alternative classification approach called the product score model-were used in combination with n-gram representation models to identify patterns between verbal features in self-narratives and psychiatric diagnoses. With our sample, the product score model with unigrams attained the highest prediction accuracy when compared with practitioners' diagnoses. The addition of multigrams contributed most to balancing the metrics of sensitivity and specificity. This article also demonstrates that text mining is a promising approach for analyzing patients' self-expression behavior, thus helping clinicians identify potential patients from an early stage.

摘要

患者对创伤经历和症状的叙述可用于临床筛查和诊断程序。在本研究中,我们提出了一种自动化评估系统,通过自然语言处理和文本挖掘方法对创伤后应激障碍患者进行筛查。我们使用了四种机器学习算法,包括决策树、朴素贝叶斯、支持向量机和一种称为乘积评分模型的替代分类方法,结合 n 元组表示模型,以识别自我叙述中的语言特征与精神科诊断之间的模式。在我们的样本中,与从业者的诊断相比,带有一元组的乘积评分模型具有最高的预测准确性。多词的加入对平衡敏感性和特异性的指标最有帮助。本文还表明,文本挖掘是分析患者自我表达行为的一种很有前途的方法,从而帮助临床医生从早期阶段识别出潜在的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验