Suppr超能文献

自然语言处理在医疗卫生专业人员工作相关压力检测中的应用:方案设计型综述研究方案。

Natural Language Processing for Work-Related Stress Detection Among Health Professionals: Protocol for a Scoping Review.

机构信息

Department of Health Professions, Bern University of Applied Sciences, Bern, Switzerland.

School of Engineering and Computer Science, Bern University of Applied Sciences, Bern, Switzerland.

出版信息

JMIR Res Protoc. 2024 May 15;13:e56267. doi: 10.2196/56267.

Abstract

BACKGROUND

There is an urgent need worldwide for qualified health professionals. High attrition rates among health professionals, combined with a predicted rise in life expectancy, further emphasize the need for additional health professionals. Work-related stress is a major concern among health professionals, affecting both the well-being of health professionals and the quality of patient care.

OBJECTIVE

This scoping review aims to identify processes and methods for the automatic detection of work-related stress among health professionals using natural language processing (NLP) and text mining techniques.

METHODS

This review follows Joanna Briggs Institute Methodology and PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. The inclusion criteria for this scoping review encompass studies involving health professionals using NLP for work-related stress detection while excluding studies involving other professions or children. The review focuses on various aspects, including NLP applications for stress detection, criteria for stress identification, technical aspects of NLP, and implications of stress detection through NLP. Studies within health care settings using diverse NLP techniques are considered, including experimental and observational designs, aiming to provide a comprehensive understanding of NLP's role in detecting stress among health professionals. Studies published in English, German, or French from 2013 to present will be considered. The databases to be searched include MEDLINE (via PubMed), CINAHL, PubMed, Cochrane, ACM Digital Library, and IEEE Xplore. Sources of unpublished studies and gray literature to be searched will include ProQuest Dissertations & Theses and OpenGrey. Two reviewers will independently retrieve full-text studies and extract data. The collected data will be organized in tables, graphs, and a qualitative narrative summary. This review will use tables and graphs to present data on studies' distribution by year, country, activity field, and research methods. Results synthesis involves identifying, grouping, and categorizing. The final scoping review will include a narrative written report detailing the search and study selection process, a visual representation using a PRISMA-ScR flow diagram, and a discussion of implications for practice and research.

RESULTS

We anticipate the outcomes will be presented in a systematic scoping review by June 2024.

CONCLUSIONS

This review fills a literature gap by identifying automated work-related stress detection among health professionals using NLP and text mining, providing insights on an innovative approach, and identifying research needs for further systematic reviews. Despite promising outcomes, acknowledging limitations in the reviewed studies, including methodological constraints, sample biases, and potential oversight, is crucial to refining methodologies and advancing automatic stress detection among health professionals.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/56267.

摘要

背景

全球范围内急需合格的卫生专业人员。卫生专业人员的高离职率,加上预期寿命的延长,进一步强调了需要更多的卫生专业人员。工作相关压力是卫生专业人员关注的主要问题,影响卫生专业人员的健康和患者护理的质量。

目的

本范围综述旨在确定使用自然语言处理 (NLP) 和文本挖掘技术自动检测卫生专业人员工作相关压力的流程和方法。

方法

本综述遵循 Joanna Briggs 研究所方法和 PRISMA-ScR(系统评价和荟萃分析扩展的首选报告项目用于范围综述)指南。本范围综述的纳入标准包括使用 NLP 检测工作相关压力的卫生专业人员的研究,同时排除涉及其他职业或儿童的研究。该综述重点关注 NLP 用于压力检测的应用、压力识别标准、NLP 的技术方面以及通过 NLP 检测压力的影响等方面。研究包括在医疗保健环境中使用各种 NLP 技术,包括实验和观察性设计,旨在全面了解 NLP 在检测卫生专业人员压力方面的作用。研究范围包括 2013 年至今发表的英语、德语或法语的研究。将搜索的数据库包括 MEDLINE(通过 PubMed)、CINAHL、PubMed、Cochrane、ACM 数字图书馆和 IEEE Xplore。未发表研究和灰色文献的来源将包括 ProQuest 论文和 OpenGrey。两位评审员将独立检索全文研究并提取数据。收集的数据将以表格、图表和定性叙述性摘要的形式组织。本综述将使用表格和图表展示按年份、国家、活动领域和研究方法分布的研究数据。结果综合包括识别、分组和分类。最终的范围综述将包括一份详细说明搜索和研究选择过程的叙述性书面报告、使用 PRISMA-ScR 流程图的视觉表示以及对实践和研究的影响的讨论。

结果

我们预计结果将于 2024 年 6 月之前以系统范围综述的形式呈现。

结论

本综述通过使用 NLP 和文本挖掘识别卫生专业人员的自动化工作相关压力检测,填补了文献空白,提供了对创新方法的见解,并确定了进一步进行系统评价的研究需求。尽管有很有前景的结果,但需要认识到审查研究中的局限性,包括方法学限制、样本偏差和潜在的监督不足,这对于改进方法和推进卫生专业人员的自动压力检测至关重要。

国际注册报告标识符(IRRID):PRR1-10.2196/56267。

相似文献

本文引用的文献

1
Nurses' motivations to leave the nursing profession: A qualitative meta-aggregation.护士离职意愿的质性元分析
J Adv Nurs. 2023 Dec;79(12):4455-4471. doi: 10.1111/jan.15696. Epub 2023 May 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验