Suppr超能文献

MONDEP:用于国家抑郁症预测的统一时空监测框架

MONDEP: A unified SpatioTemporal MONitoring Framework for National DEPression Forecasting.

作者信息

Thaipisutikul Tipajin, Vitoochuleechoti Pasinpat, Thaipisutikul Papan, Tuarob Suppawong

机构信息

Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand.

Department of Psychiatry, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

出版信息

Heliyon. 2024 Aug 28;10(17):e36877. doi: 10.1016/j.heliyon.2024.e36877. eCollection 2024 Sep 15.

Abstract

Depression has become a prevalent mental disorder that significantly affects a person's emotions, behaviors, physical health, ability to perform daily tasks, and ability to maintain healthy relationships. Untreated depression can escalate the risk of suicide, making the situation even worse. Despite an abundance of models previously proposed for forecasting depression, the issue of foretelling the overall number of patients at each administrative level remains under-investigated. Therefore, in this paper, we propose a simple but effective SpatioTemporal Monitoring Framework for National Depression Forecasting (MONDEP). In particular, we analyze national depression statistics data in Thailand as a case study and create prediction models for a real-time depression forecasting system using machine learning and deep learning approaches. In order to forecast the prevalence of depression at various administrative levels, we use the hierarchical structure of depression aggregation. The proposed framework consists of three modules: Data Pre-processing to extract and pre-process the raw data, Exploratory Data Analysis (EDA) to visualize and analyze the data to get insight, and Model Training and Testing to predict future depression cases. The objective of our research is to construct a comprehensive MONDEP framework that utilizes machine learning and deep learning to predict depression profiles at the district and national levels using multivariate time series across various administrative levels. Our study illustrates the considerable association between a spatial-temporal component and demonstrates how depression profiles may be represented by employing lower administrative-level data to estimate the general level of mental health across the nation. Additionally, the best performance across all criteria is obtained when a deep learning model is used to exploit multivariate time series, showing a 13% improvement in MAE measure compared to the SARIMAX baseline. We believe the proposed framework could be used as a point of reference for decision-making regarding the management of depression and has the potential to be incredibly helpful for policymakers in successfully managing mental health services on time.

摘要

抑郁症已成为一种普遍的精神障碍,严重影响一个人的情绪、行为、身体健康、日常任务执行能力以及维持健康人际关系的能力。未经治疗的抑郁症会增加自杀风险,使情况变得更糟。尽管此前已经提出了大量用于预测抑郁症的模型,但在每个行政级别上预测患者总数的问题仍未得到充分研究。因此,在本文中,我们提出了一种简单但有效的国家抑郁症预测时空监测框架(MONDEP)。具体而言,我们以泰国的国家抑郁症统计数据为例进行分析,并使用机器学习和深度学习方法为实时抑郁症预测系统创建预测模型。为了预测不同行政级别上的抑郁症患病率,我们使用抑郁症汇总的层次结构。所提出的框架由三个模块组成:数据预处理,用于提取和预处理原始数据;探索性数据分析(EDA),用于可视化和分析数据以获取见解;模型训练与测试,用于预测未来的抑郁症病例。我们研究的目标是构建一个全面的MONDEP框架,该框架利用机器学习和深度学习,通过跨不同行政级别的多变量时间序列来预测地区和国家层面的抑郁症概况。我们的研究说明了时空成分之间的显著关联,并展示了如何通过使用较低行政级别的数据来估计全国心理健康的总体水平,从而呈现抑郁症概况。此外,当使用深度学习模型来利用多变量时间序列时,在所有标准下都能获得最佳性能,与SARIMAX基线相比,平均绝对误差(MAE)测量值提高了13%。我们相信,所提出的框架可以作为抑郁症管理决策的参考点,并且有可能对政策制定者成功及时地管理心理健康服务非常有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cb6/11402176/0aacd07274d6/gr001.jpg

相似文献

1
MONDEP: A unified SpatioTemporal MONitoring Framework for National DEPression Forecasting.
Heliyon. 2024 Aug 28;10(17):e36877. doi: 10.1016/j.heliyon.2024.e36877. eCollection 2024 Sep 15.
2
Developing a multivariate time series forecasting framework based on stacked autoencoders and multi-phase feature.
Heliyon. 2024 Mar 19;10(7):e27860. doi: 10.1016/j.heliyon.2024.e27860. eCollection 2024 Apr 15.
3
A time series based machine learning strategy for wastewater-based forecasting and nowcasting of COVID-19 dynamics.
Sci Total Environ. 2023 Nov 1;897:165105. doi: 10.1016/j.scitotenv.2023.165105. Epub 2023 Jun 29.
4
Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database.
Int J Environ Res Public Health. 2020 Jul 10;17(14):4979. doi: 10.3390/ijerph17144979.
6
Development of a Machine Learning Model Using Multiple, Heterogeneous Data Sources to Estimate Weekly US Suicide Fatalities.
JAMA Netw Open. 2020 Dec 1;3(12):e2030932. doi: 10.1001/jamanetworkopen.2020.30932.
7
A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China.
Environ Sci Pollut Res Int. 2023 Nov;30(55):117485-117502. doi: 10.1007/s11356-023-30428-5. Epub 2023 Oct 23.
8
Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series.
Sensors (Basel). 2021 Jun 26;21(13):4379. doi: 10.3390/s21134379.

本文引用的文献

2
Predicting the Behavioral Health Needs of Asian Americans in Public Mental Health Treatment: A Classification Tree Approach.
Adm Policy Ment Health. 2023 Jul;50(4):630-643. doi: 10.1007/s10488-023-01266-x. Epub 2023 Mar 29.
3
A Review of Machine Learning and Deep Learning Approaches on Mental Health Diagnosis.
Healthcare (Basel). 2023 Jan 17;11(3):285. doi: 10.3390/healthcare11030285.
4
Single classifier vs. ensemble machine learning approaches for mental health prediction.
Brain Inform. 2023 Jan 3;10(1):1. doi: 10.1186/s40708-022-00180-6.
5
TSF-transformer: a time series forecasting model for exhaust gas emission using transformer.
Appl Intell (Dordr). 2022 Dec 23:1-15. doi: 10.1007/s10489-022-04326-1.
6
Language-agnostic deep learning framework for automatic monitoring of population-level mental health from social networks.
J Biomed Inform. 2022 Sep;133:104145. doi: 10.1016/j.jbi.2022.104145. Epub 2022 Jul 28.
9
Risk of Depression and Suicide in Diabetic Patients.
Cureus. 2022 Jan 1;14(1):e20860. doi: 10.7759/cureus.20860. eCollection 2022 Jan.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验