Pini Maria, Touch Sothea, Poirier Hélène, Dalmas Elise, Niot Isabelle, Rouault Christine, Druart Céline, Delzenne Nathalie, Clément Karine, André Sébastien, Guerre-Millo Michèle
*Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unité Mixte de Recherche en Santé 1166, Paris, France; INSERM, Unité Mixte de Recherche en Santé 1166, Nutriomics Team 6, Paris, France; Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, Unité Mixte de Recherche U866, Université de Bourgogne, AgroSupDijon, Dijon, France; and Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium.
*Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unité Mixte de Recherche en Santé 1166, Paris, France; INSERM, Unité Mixte de Recherche en Santé 1166, Nutriomics Team 6, Paris, France; Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, Unité Mixte de Recherche U866, Université de Bourgogne, AgroSupDijon, Dijon, France; and Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
FASEB J. 2016 Jan;30(1):241-51. doi: 10.1096/fj.15-276675. Epub 2015 Sep 11.
In mice, nutritional supplementation with the trans-10,cis-12 isomer of linoleic acid (t10,c12-CLA) promotes lipoatrophy, hyperinsulinemia, and macrophage infiltration in white adipose tissue (WAT). We explored the dynamics of these interrelated responses over 2 consecutive 7 d periods of t10,c12-CLA administration and withdrawal. t10,c12-CLA down-regulated lipogenic and lipolytic gene expression and increased collagen deposition, but with no evidence of cross-linking. An abundant CD45(+) cell infiltrate, comprising prominently CD206(+)CD11c(-) macrophages, was found in WAT in association with an anti-inflammatory gene signature. Infiltration of natural killer (NK) and dendritic cells contributed to WAT's innate immune response to t10,c12-CLA. Less abundant adaptive immune cells colonized WAT, including B, NK T, γδ T, and αβ T cells. By contrast, T-regulatory cell abundance was not affected. Interruption of treatment allowed recovery of WAT mass and normalization of insulinemia, coincident with regain of WAT homeostasis owing to a coordinated reversion of genic, structural, and immune deregulations. These data revealed a striking resilience of WAT after a short-term metabolic injury induced by t10,c12-CLA, which relies on alternatively activated M2 macrophage engagement. In addition, the temporal links between variations in WAT alterations and insulinemia upon t10,c12-CLA manipulation strengthen the view that WAT dysfunctional status is critically involved in altered glucose homeostasis.
在小鼠中,用亚油酸的反式-10,顺式-12异构体(t10,c12-CLA)进行营养补充会促进白色脂肪组织(WAT)中的脂肪萎缩、高胰岛素血症和巨噬细胞浸润。我们在连续两个7天的t10,c12-CLA给药和撤药期间探索了这些相互关联反应的动态变化。t10,c12-CLA下调了脂肪生成和脂肪分解基因的表达,并增加了胶原蛋白沉积,但没有交联的证据。在WAT中发现了大量的CD45(+)细胞浸润,其中主要是CD206(+)CD11c(-)巨噬细胞,并伴有抗炎基因特征。自然杀伤(NK)细胞和树突状细胞的浸润促成了WAT对t10,c12-CLA的先天免疫反应。定居在WAT中的适应性免疫细胞较少,包括B细胞、NK T细胞、γδ T细胞和αβ T细胞。相比之下,调节性T细胞的丰度不受影响。中断治疗可使WAT质量恢复,胰岛素血症正常化,这与WAT稳态的恢复同时发生,这是由于基因、结构和免疫失调的协调逆转。这些数据揭示了WAT在由t10,c12-CLA诱导的短期代谢损伤后具有惊人的恢复力,这依赖于交替激活的M2巨噬细胞参与。此外,t10,c12-CLA操作后WAT改变与胰岛素血症变化之间的时间联系强化了这样一种观点,即WAT功能失调状态在改变的葡萄糖稳态中起关键作用。