Sato Shingo, Shimada Takao, Hasegawa Koji
J Opt Soc Am A Opt Image Sci Vis. 2015 Jul 1;32(7):1216-21. doi: 10.1364/JOSAA.32.001216.
A transcendental equation occurs when we compute the dispersion relations of an electromagnetic waveguide, such as a planar multilayer waveguide. Without an initial guess, the Sakurai-Sugiura projection method (SSM) can obtain solutions to the transcendental equation in a region bounded by a contour integral path in the complex plane. In this paper, a criterion employing the condition number of eigenvalues as a simple index to distinguish physical solutions from spurious ones in the SSM is presented, and a transcendental equation of a multilayer waveguide obtained by the transfer matrix method is solved by the SSM. Numerical results show the usefulness of the index and good agreement with the results of the argument principle method and Newton's method.
当我们计算诸如平面多层波导之类的电磁波导的色散关系时,就会出现超越方程。在没有初始猜测的情况下,樱井 - 杉浦投影法(SSM)可以在复平面上由围道积分路径界定的区域内获得超越方程的解。本文提出了一种以特征值条件数作为简单指标的准则,用于在SSM中区分物理解和虚假解,并利用SSM求解了通过转移矩阵法得到的多层波导的超越方程。数值结果表明了该指标的有效性,并且与辐角原理法和牛顿法的结果吻合良好。