Tyler David W, Dank Jeffrey A
J Opt Soc Am A Opt Image Sci Vis. 2015 Aug 1;32(8):1425-36. doi: 10.1364/JOSAA.32.001425.
The Cramér-Rao lower bound (CRLB) is a valuable tool to quantify fundamental limits to estimation problems associated with imaging systems, and has been used previously to study image registration performance bounds. Most existing work, however, assumes constant-variance noise; for many applications, noise is signal-dependent. Further, linear filters applied after detection can potentially yield reduced registration error, but prior work has not treated the CRLB behavior caused by filter-imposed noise correlation. We have developed computational methods to efficiently generalize existing image registration CRLB calculations to account for the effect of both signal-dependent noise and linear filtering on the estimation of rigid-translation ("shift") parameters. Because effective use of the CRLB requires radiometrically realistic simulated imagery, we have also developed methods to exploit computer animation software and available optical properties databases to conveniently build and modify synthetic objects for radiometric image simulations using DIRSIG. In this paper, we present the generalized expressions for the rigid shift Fisher information matrix and discuss the properties of the associated CRLB. We discuss the methods used to synthesize object "sets" for use in DIRSIG, and then demonstrate the use of simulated imagery in the CRLB code to choose an error-minimizing filter and optimal integration time for an image-based tracker in the presence of random platform jitter.
克拉美 - 罗下界(CRLB)是一种用于量化与成像系统相关的估计问题基本极限的重要工具,此前已被用于研究图像配准性能界限。然而,大多数现有工作都假设噪声具有恒定方差;在许多应用中,噪声是与信号相关的。此外,检测后应用的线性滤波器可能会潜在地降低配准误差,但先前的工作尚未处理由滤波器引起的噪声相关性所导致的CRLB行为。我们已经开发了计算方法,以有效地将现有的图像配准CRLB计算进行推广,以考虑与信号相关的噪声和线性滤波对刚性平移(“偏移”)参数估计的影响。由于有效使用CRLB需要辐射度逼真的模拟图像,我们还开发了利用计算机动画软件和可用光学特性数据库的方法,以便使用DIRSIG方便地构建和修改用于辐射度图像模拟的合成对象。在本文中,我们给出了刚性偏移费舍尔信息矩阵的广义表达式,并讨论了相关CRLB的性质。我们讨论了用于在DIRSIG中合成对象“集”的方法,然后展示了在存在随机平台抖动的情况下,在CRLB代码中使用模拟图像为基于图像的跟踪器选择误差最小化滤波器和最佳积分时间。