Sonntag Frank, Kroner Cora, Lubuta Patrice, Peyraud Rémi, Horst Angelika, Buchhaupt Markus, Schrader Jens
DECHEMA Research Institute, Theodor-Heuss-Allee 25, Frankfurt am Main 60486, Germany.
INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
Metab Eng. 2015 Nov;32:82-94. doi: 10.1016/j.ymben.2015.09.004. Epub 2015 Sep 11.
Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.
在过去的10到15年里,微生物代谢工程已成为萜类化合物高水平从头合成的通用工具,倍半萜类化合物armopha-1,4-二烯、法尼烯和青蒿酸就是主要例子。然而,迄今为止,几乎所有用于萜类化合物的细胞工厂方法都以糖为原料,而糖主要用作食物资源且价格波动较大。在本研究中,我们展示了通过代谢工程改造的扭脱甲基杆菌AM1从丰富可用的非食物碳源甲醇中从头合成倍半萜类化合物α-葎草烯。来自红球姜的α-葎草烯合酶与来自酿酒酵母的法尼基焦磷酸(FPP)合酶共同表达,使得α-葎草烯的浓度高达18 mg/L。引入来自黄色粘球菌的原核甲羟戊酸途径并结合α-葎草烯和FPP合酶的核糖体结合位点优化,使产物浓度提高了3倍。使用类胡萝卜素合成缺陷突变菌株,该值又提高了30%。在甲醇限量补料分批培养中获得了高达1.65 g/L的最终产物浓度,这是迄今为止报道的从头合成α-葎草烯的最高滴度。本研究证明了扭脱甲基杆菌作为未来从替代碳源甲醇生产高价值萜类化合物的平台菌株的潜力。