Suppr超能文献

在AM1中构建萜类化合物生产途径

Engineering Terpene Production Pathways in AM1.

作者信息

Hurt Allison, Bibik Jacob D, Martinez-Gomez Norma Cecilia, Hamberger Björn

机构信息

Department on Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Microorganisms. 2024 Feb 29;12(3):500. doi: 10.3390/microorganisms12030500.

Abstract

Terpenes are diverse specialized metabolites naturally found within plants and have important roles in inter-species communication, adaptation and interaction with the environment. Their industrial applications span a broad range, including fragrances, flavors, cosmetics, natural colorants to agrochemicals and therapeutics, yet formal chemical synthesis is economically challenging due to structural complexities. Engineering terpene biosynthesis could represent an alternative in microbial biotechnological workhorses, such as or , utilizing sugars or complex media as feedstocks. Host species that metabolize renewable and affordable carbon sources may offer unique sustainable biotechnological alternatives. Methylotrophs are bacteria with the capacity to utilize one-carbon feedstocks, such as methanol or formate. They colonize the phyllosphere (above-ground area) of plants, and many accumulate abundant carotenoid pigments. Methylotrophs have the capacity to take up and use a subset of the rare earth elements known as lanthanides. These metals can enhance one-carbon (methylotrophic) metabolism. Here, we investigated whether manipulating the metabolism enables and enhances terpene production. A carotenoid-deficient mutant potentially liberates carbon, which may contribute to bioproduct accumulation. To test this hypothesis, terpene-producing bacterial strains regulated by two distinct promoters were generated. Wildtype , ∆, a methylotrophic mutant lacking the carotenoid pathway, and an strain were transformed with an exogenous terpene pathway and grown both in the presence and absence of lanthanides. The extraction, and the comparison of analytical profiles, provided evidence that engineered cultured under control of a native, inducible methylotrophic promoter can yield the sesquiterpene patchoulol when supplemented with lanthanide. In contrast, using a moderate-strength constitutive promoter failed to give production. We demonstrated colonization of the phyllosphere with the engineered strains, supporting the future engineering of selected species of the plant microbiome and with promising implications for the synthetic biology of small molecules.

摘要

萜类化合物是植物中天然存在的多种特殊代谢产物,在种间通讯、适应环境以及与环境的相互作用中发挥着重要作用。它们的工业应用广泛,涵盖香料、调味剂、化妆品、天然色素、农用化学品和治疗药物等领域。然而,由于结构复杂,其正式的化学合成在经济上具有挑战性。工程化萜类生物合成可能是微生物生物技术中的一种替代方法,例如利用糖或复杂培养基作为原料的大肠杆菌或酿酒酵母。能够代谢可再生且价格合理的碳源的宿主物种可能提供独特的可持续生物技术替代方案。甲基营养菌是一类能够利用单碳原料(如甲醇或甲酸)的细菌。它们定殖于植物的叶际(地上部分),许多甲基营养菌会积累大量类胡萝卜素色素。甲基营养菌有能力吸收和利用被称为镧系元素的一部分稀土元素。这些金属可以增强单碳(甲基营养)代谢。在此,我们研究了操纵代谢是否能够实现并增强萜类化合物的生产。一种缺乏类胡萝卜素的突变体可能会释放碳,这可能有助于生物产品的积累。为了验证这一假设,构建了受两个不同启动子调控的产萜类细菌菌株。野生型大肠杆菌、缺乏类胡萝卜素途径的甲基营养突变体∆以及酿酒酵母菌株用外源萜类途径进行转化,并在有和没有镧系元素的情况下生长。提取物以及分析图谱的比较提供了证据,表明在天然的、可诱导的甲基营养启动子控制下的工程化培养大肠杆菌在添加镧系元素时能够产生倍半萜广藿香醇。相比之下,使用中等强度的组成型启动子则无法实现生产。我们证明了工程菌株能够定殖于叶际,这为未来对植物微生物组特定物种的工程改造提供了支持,并对小分子合成生物学具有潜在的重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c13e/10974752/859904119067/microorganisms-12-00500-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验