Soares Siomar C, Geyik Hakan, Ramos Rommel T J, de Sá Pablo H C G, Barbosa Eudes G V, Baumbach Jan, Figueiredo Henrique C P, Miyoshi Anderson, Tauch Andreas, Silva Artur, Azevedo Vasco
Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
J Biotechnol. 2016 Aug 20;232:2-11. doi: 10.1016/j.jbiotec.2015.09.008. Epub 2015 Sep 12.
Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits.
细菌是高度多样化的生物,由于其高度的基因组可塑性,能够适应广泛的环境和宿主。水平基因转移通过纳入大片段基因组序列(通常称为基因组岛,GEIs),在这种基因组可塑性和跳跃式进化中发挥着关键作用。GEIs可能携带编码毒力、代谢、抗生素抗性和共生相关功能的基因,即致病岛(PAIs)、代谢岛(MIs)、抗性岛(RIs)和共生岛(SIs)。尽管存在许多用于预测GEIs的软件,但它们仅专注于PAI预测,并且存在其他局限性,例如安装复杂和用户界面不方便。在这里,我们展示了GIPSy,即基因组岛预测软件,这是一款独立且用户友好的用于预测GEIs的软件,它基于我们之前开发的致病岛预测软件(PIPS)构建。我们还展示了四个应用案例,其中我们将文献数据与GIPSy预测的PAIs、MIs、RIs和SIs进行了交叉关联。简而言之,GIPSy正确预测了以下先前描述的GEIs:大肠杆菌CFT073中13个大于30kb的PAIs;嗜麦芽窄食单胞菌K96243的1个MI,它似乎是一个杂合岛;鲍曼不动杆菌AYE的1个RI,名为AbaR1;以及苜蓿中华根瘤菌MAFF303099的1个具有镶嵌结构的SI。GIPSy是首个针对特定生活方式的基因组岛预测软件,可对PAIs、MIs、RIs和SIs进行分析,为更好地理解细菌基因组可塑性和新性状适应开辟了道路。