Suppr超能文献

水平基因转移检测的现状与未来展望

Current state and future prospects of Horizontal Gene Transfer detection.

作者信息

Wijaya Andre Jatmiko, Anžel Aleksandar, Richard Hugues, Hattab Georges

机构信息

Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.

Department of Mathematics and Computer Science, Freie Universität, Arnimallee 14, 14195 Berlin, Germany.

出版信息

NAR Genom Bioinform. 2025 Feb 11;7(1):lqaf005. doi: 10.1093/nargab/lqaf005. eCollection 2025 Mar.

Abstract

Artificial intelligence (AI) has been shown to be beneficial in a wide range of bioinformatics applications. Horizontal Gene Transfer (HGT) is a driving force of evolutionary changes in prokaryotes. It is widely recognized that it contributes to the emergence of antimicrobial resistance (AMR), which poses a particularly serious threat to public health. Many computational approaches have been developed to study and detect HGT. However, the application of AI in this field has not been investigated. In this work, we conducted a review to provide information on the current trend of existing computational approaches for detecting HGT and to decipher the use of AI in this field. Here, we show a growing interest in HGT detection, characterized by a surge in the number of computational approaches, including AI-based approaches, in recent years. We organize existing computational approaches into a hierarchical structure of computational groups based on their computational methods and show how each computational group evolved. We make recommendations and discuss the challenges of HGT detection in general and the adoption of AI in particular. Moreover, we provide future directions for the field of HGT detection.

摘要

人工智能(AI)已被证明在广泛的生物信息学应用中有益。水平基因转移(HGT)是原核生物进化变化的驱动力。人们普遍认识到,它促成了抗菌药物耐药性(AMR)的出现,这对公共卫生构成了特别严重的威胁。已经开发了许多计算方法来研究和检测HGT。然而,尚未研究AI在该领域的应用。在这项工作中,我们进行了一项综述,以提供有关检测HGT的现有计算方法的当前趋势的信息,并解读AI在该领域的应用。在这里,我们显示出对HGT检测的兴趣日益增加,其特点是近年来包括基于AI的方法在内的计算方法数量激增。我们根据现有计算方法的计算方法将其组织成一个计算组的层次结构,并展示每个计算组是如何发展的。我们提出建议并讨论HGT检测的一般挑战,特别是AI的采用。此外,我们提供了HGT检测领域的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da5/11811736/2a3a323ef0e8/lqaf005fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验