Zhu Lijuan, Wang Zhikai, Wang Wenwen, Wang Chunli, Hua Shasha, Su Zeqi, Brako Larry, Garcia-Barrio Minerva, Ye Mingliang, Wei Xuan, Zou Hanfa, Ding Xia, Liu Lifang, Liu Xing, Yao Xuebiao
Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China.
Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China; the Morehouse School of Medicine and Atlanta Cardiovascular Research Institute, Atlanta, Georgia 30310.
J Biol Chem. 2015 Nov 6;290(45):27053-27066. doi: 10.1074/jbc.M115.658534. Epub 2015 Sep 16.
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.
有丝分裂染色体分离由纺锤体微管与动粒之间的动态相互作用精心编排。在染色体排列过程中,动粒结合的微管经历生长和收缩之间的动态循环,导致染色体沿纺锤体轴进行振荡运动。尽管动粒蛋白CENP-H作为动粒-微管动力学的分子控制因子,但CENP-H与动粒微管(kMT)之间的机制联系仍不太清楚。在这里,我们表明CSPP1是一种在有丝分裂中对准确染色体运动至关重要的动粒蛋白。CSPP1在体外和体内均与CENP-H结合。抑制CSPP1会扰乱正常的有丝分裂进程,并损害纺锤体组装检查点的满足情况。此外,在CSPP1缺失的细胞中染色体振荡大大减弱,类似于在CENP-H缺失的细胞中观察到的情况。重要的是,CSPP1缺失会提高动粒运动速度,而CSPP1的过表达会降低速度,这表明CSPP1在细胞分裂过程中促进kMT稳定性。使用膜通透性竞争肽对CENP-H/CSPP1相互作用进行特异性干扰会导致短暂的有丝分裂停滞和染色体分离缺陷。基于这些发现,我们提出CSPP1在动粒上与CENP-H合作,作为kMT动力学的新型调节因子,以实现准确的染色体分离。