Wilcken Rainer, Zimmermann Markus O, Bauer Matthias R, Rutherford Trevor J, Fersht Alan R, Joerger Andreas C, Boeckler Frank M
MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany.
ACS Chem Biol. 2015 Dec 18;10(12):2725-32. doi: 10.1021/acschembio.5b00515. Epub 2015 Oct 1.
Bioisosteric replacements are widely used in medicinal chemistry to improve physicochemical and ADME properties of molecules while retaining or improving affinity. Here, using the p53 cancer mutant Y220C as a test case, we investigate both computationally and experimentally whether an ethynyl moiety is a suitable bioisostere to replace iodine in ligands that form halogen bonds with the protein backbone. This bioisosteric transformation is synthetically feasible via Sonogashira cross-coupling. In our test case of a particularly strong halogen bond, replacement of the iodine with an ethynyl group resulted in a 13-fold affinity loss. High-resolution crystal structures of the two analogues in complex with the p53-Y220C mutant enabled us to correlate the different affinities with particular features of the binding site and subtle changes in ligand binding mode. In addition, using QM calculations and analyzing the PDB, we provide general guidelines for identifying cases where such a transformation is likely to improve ligand recognition.
生物电子等排体替代物在药物化学中被广泛应用,以改善分子的物理化学性质和ADME性质,同时保留或提高亲和力。在此,我们以p53癌症突变体Y220C作为测试案例,通过计算和实验研究乙炔基是否是一种合适的生物电子等排体,以取代与蛋白质主链形成卤键的配体中的碘。这种生物电子等排体转化通过Sonogashira交叉偶联在合成上是可行的。在我们这个特别强的卤键测试案例中,用乙炔基取代碘导致亲和力损失了13倍。与p53-Y220C突变体复合的两种类似物的高分辨率晶体结构,使我们能够将不同的亲和力与结合位点的特定特征以及配体结合模式的细微变化联系起来。此外,通过量子力学计算和分析蛋白质数据银行(PDB),我们提供了一些通用指南,用于识别这种转化可能改善配体识别的情况。