Suppr超能文献

用于治疗脊髓性肌萎缩症的反义靶点的作用机制原理

Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.

作者信息

Singh Natalia N, Lee Brian M, DiDonato Christine J, Singh Ravindra N

机构信息

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.

Center for Advanced Host Defenses, Immunobiotics & Translational Comparative Medicine (CAHDIT), Iowa State University, Ames, IA 50011, USA.

出版信息

Future Med Chem. 2015;7(13):1793-808. doi: 10.4155/fmc.15.101. Epub 2015 Sep 18.

Abstract

Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.

摘要

脊髓性肌萎缩症(SMA)是一种主要发生于儿童和婴儿的神经退行性疾病。SMA主要是由于SMN1基因的缺失或突变导致SMN蛋白水平低下所致。SMN2是SMN1的几乎相同的拷贝,但由于外显子7的主要跳跃,无法补偿功能性SMN蛋白产生的损失。包括反义寡核苷酸(ASO)在内的几种化合物有望通过提高SMN2产生的SMN蛋白来进行治疗。一种目前正处于III期临床试验阶段的基于ASO的药物将内含子剪接沉默子N1(ISS-N1)作为其靶点。对ISS-N1的累积研究揭示了大量对SMA整体治疗发展具有重要意义的信息。在此,作者总结了目前可用于SMA治疗的各种反义靶点背后的作用机制原理。

相似文献

1
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
Future Med Chem. 2015;7(13):1793-808. doi: 10.4155/fmc.15.101. Epub 2015 Sep 18.
2
Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
Adv Neurobiol. 2018;20:31-61. doi: 10.1007/978-3-319-89689-2_2.
3
RNA in spinal muscular atrophy: therapeutic implications of targeting.
Expert Opin Ther Targets. 2020 Aug;24(8):731-743. doi: 10.1080/14728222.2020.1783241. Epub 2020 Jun 25.
4
Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
Ann N Y Acad Sci. 2015 Apr;1341:176-87. doi: 10.1111/nyas.12727. Epub 2015 Feb 27.
5
Nusinersen in the Treatment of Spinal Muscular Atrophy.
Methods Mol Biol. 2018;1828:69-76. doi: 10.1007/978-1-4939-8651-4_4.
6
Heat increases full-length SMN splicing: promise for splice-augmenting therapies for SMA.
Hum Genet. 2022 Feb;141(2):239-256. doi: 10.1007/s00439-021-02408-7. Epub 2022 Jan 28.
10
How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
Gene Ther. 2017 Sep;24(9):520-526. doi: 10.1038/gt.2017.34. Epub 2017 May 9.

引用本文的文献

1
Synergistic Effect of an Antisense Oligonucleotide and Small Molecule on Splicing Correction of the Spinal Muscular Atrophy Gene.
Neurosci Insights. 2024 Feb 19;19:26331055241233596. doi: 10.1177/26331055241233596. eCollection 2024.
2
Antisense oligonucleotides: a novel Frontier in pharmacological strategy.
Front Pharmacol. 2023 Nov 17;14:1304342. doi: 10.3389/fphar.2023.1304342. eCollection 2023.
3
Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy.
Nucleic Acids Res. 2023 Jul 7;51(12):5948-5980. doi: 10.1093/nar/gkad259.
4
How does precursor RNA structure influence RNA processing and gene expression?
Biosci Rep. 2023 Mar 31;43(3). doi: 10.1042/BSR20220149.
5
History of development of the life-saving drug "Nusinersen" in spinal muscular atrophy.
Front Cell Neurosci. 2022 Aug 12;16:942976. doi: 10.3389/fncel.2022.942976. eCollection 2022.
6
Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene.
Front Mol Biosci. 2022 Jul 1;9:928581. doi: 10.3389/fmolb.2022.928581. eCollection 2022.

本文引用的文献

1
Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
Ann N Y Acad Sci. 2015 Apr;1341:176-87. doi: 10.1111/nyas.12727. Epub 2015 Feb 27.
2
Modeling complex RNA tertiary folds with Rosetta.
Methods Enzymol. 2015;553:35-64. doi: 10.1016/bs.mie.2014.10.051. Epub 2015 Feb 12.
3
Spinal Muscular Atrophy Therapeutics: Where do we Stand?
Neurotherapeutics. 2015 Apr;12(2):303-16. doi: 10.1007/s13311-015-0337-y.
5
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
Science. 2015 Jan 9;347(6218):1254806. doi: 10.1126/science.1254806. Epub 2014 Dec 18.
8
Advances in therapeutic development for spinal muscular atrophy.
Future Med Chem. 2014 Jun;6(9):1081-99. doi: 10.4155/fmc.14.63.
9
A short antisense oligonucleotide ameliorates symptoms of severe mouse models of spinal muscular atrophy.
Mol Ther Nucleic Acids. 2014 Jul 8;3(7):e174. doi: 10.1038/mtna.2014.23.
10
Spinal muscular atrophy: journeying from bench to bedside.
Neurotherapeutics. 2014 Oct;11(4):786-95. doi: 10.1007/s13311-014-0293-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验