Singh Natalia N, Lee Brian M, DiDonato Christine J, Singh Ravindra N
Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
Center for Advanced Host Defenses, Immunobiotics & Translational Comparative Medicine (CAHDIT), Iowa State University, Ames, IA 50011, USA.
Future Med Chem. 2015;7(13):1793-808. doi: 10.4155/fmc.15.101. Epub 2015 Sep 18.
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
脊髓性肌萎缩症(SMA)是一种主要发生于儿童和婴儿的神经退行性疾病。SMA主要是由于SMN1基因的缺失或突变导致SMN蛋白水平低下所致。SMN2是SMN1的几乎相同的拷贝,但由于外显子7的主要跳跃,无法补偿功能性SMN蛋白产生的损失。包括反义寡核苷酸(ASO)在内的几种化合物有望通过提高SMN2产生的SMN蛋白来进行治疗。一种目前正处于III期临床试验阶段的基于ASO的药物将内含子剪接沉默子N1(ISS-N1)作为其靶点。对ISS-N1的累积研究揭示了大量对SMA整体治疗发展具有重要意义的信息。在此,作者总结了目前可用于SMA治疗的各种反义靶点背后的作用机制原理。