Suppr超能文献

一氧化氮和硫化氢对缺血性血管重塑的调节作用

Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling.

作者信息

Yuan Shuai, Kevil Christopher G

机构信息

Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA.

出版信息

Microcirculation. 2016 Feb;23(2):134-45. doi: 10.1111/micc.12248.

Abstract

Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling.

摘要

流经输送动脉的血流受阻或受限会导致受干扰区域下游的组织缺血。局部组织可以通过血管生成和动脉生成刺激血管重塑来适应这一挑战,从而恢复血液灌注并清除废物。缺血期间血管重塑的多种分子机制已被识别并广泛研究。然而,由于各种信号网络的复杂性以及对控制这些反应的核心代谢调节因子缺乏了解,这些发现和见解的治疗益处有限。气体信号分子一氧化氮(NO)和硫化氢(H2S)已成为影响缺血性血管重塑所需多个分子靶点的主要调节因子。在本综述中,我们讨论了NO和H2S在缺血状态下如何分别受到调节,它们在血管生成和动脉生成中的作用是什么,以及它们的相互作用如何控制缺血性血管重塑。

相似文献

1
Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling.
Microcirculation. 2016 Feb;23(2):134-45. doi: 10.1111/micc.12248.
2
Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling.
Compr Physiol. 2019 Jun 12;9(3):1213-1247. doi: 10.1002/cphy.c180026.
3
Novel Angiogenic Activity and Molecular Mechanisms of ZYZ-803, a Slow-Releasing Hydrogen Sulfide-Nitric Oxide Hybrid Molecule.
Antioxid Redox Signal. 2016 Sep 10;25(8):498-514. doi: 10.1089/ars.2015.6607. Epub 2016 Jun 29.
4
Cystathionine γ-Lyase Modulates Flow-Dependent Vascular Remodeling.
Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2126-2136. doi: 10.1161/ATVBAHA.118.311402.
5
Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis.
PLoS One. 2015 Jul 2;10(7):e0127931. doi: 10.1371/journal.pone.0127931. eCollection 2015.
6
Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment.
Cardiovasc Res. 2015 Sep 1;107(4):590-600. doi: 10.1093/cvr/cvv198. Epub 2015 Jul 20.
7
Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.
Br J Pharmacol. 2015 Mar;172(6):1479-93. doi: 10.1111/bph.12869.
8
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System.
Oxid Med Cell Longev. 2016;2016:6904327. doi: 10.1155/2016/6904327. Epub 2015 Nov 10.
9
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration.
J Mol Biol. 2017 Feb 17;429(4):543-561. doi: 10.1016/j.jmb.2016.12.015. Epub 2016 Dec 21.
10
Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms.
Vasc Health Risk Manag. 2015 Feb 27;11:173-83. doi: 10.2147/VHRM.S68415. eCollection 2015.

引用本文的文献

4
Role of hydrogen sulphide in physiological and pathological angiogenesis.
Cell Prolif. 2023 Mar;56(3):e13374. doi: 10.1111/cpr.13374. Epub 2022 Dec 7.
5
Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization.
Front Cardiovasc Med. 2022 Oct 3;9:965965. doi: 10.3389/fcvm.2022.965965. eCollection 2022.
6
Hydrogen sulfide: A new therapeutic target in vascular diseases.
Front Endocrinol (Lausanne). 2022 Aug 10;13:934231. doi: 10.3389/fendo.2022.934231. eCollection 2022.
8
Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease.
Pharmaceutics. 2022 Jun 25;14(7):1345. doi: 10.3390/pharmaceutics14071345.
9
HO-responsive VEGF/NGF gene co-delivery nano-system achieves stable vascularization in ischemic hindlimbs.
J Nanobiotechnology. 2022 Mar 19;20(1):145. doi: 10.1186/s12951-022-01328-6.

本文引用的文献

1
Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment.
Cardiovasc Res. 2015 Sep 1;107(4):590-600. doi: 10.1093/cvr/cvv198. Epub 2015 Jul 20.
4
Working with nitric oxide and hydrogen sulfide in biological systems.
Am J Physiol Lung Cell Mol Physiol. 2015 Mar 1;308(5):L403-15. doi: 10.1152/ajplung.00327.2014. Epub 2014 Dec 30.
6
Organization of the human mitochondrial hydrogen sulfide oxidation pathway.
J Biol Chem. 2014 Nov 7;289(45):30901-10. doi: 10.1074/jbc.M114.602664. Epub 2014 Sep 15.
8
Nitric oxide and hypoxia signaling.
Vitam Horm. 2014;96:161-92. doi: 10.1016/B978-0-12-800254-4.00007-6.
9
Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia.
J Neurosci Res. 2014 Nov;92(11):1520-8. doi: 10.1002/jnr.23427. Epub 2014 Jun 17.
10
Hydrogen sulfide to the rescue in obstructive kidney injury.
Kidney Int. 2014 Jun;85(6):1255-8. doi: 10.1038/ki.2013.529.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验