Suppr超能文献

用于复杂流体中游泳增强的相分离模型。

Phase-separation models for swimming enhancement in complex fluids.

作者信息

Man Yi, Lauga Eric

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):023004. doi: 10.1103/PhysRevE.92.023004. Epub 2015 Aug 4.

Abstract

Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex fluid. It is based on the fact that microstructured fluids will generically phase-separate near surfaces, leading to the presence of low-viscosity layers, which promote slip and decrease viscous friction near the surface of the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer. Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a two-dimensional sheet and that of a three-dimensional filament, we show that phase-separation systematically increases the locomotion speeds, possibly by orders of magnitude. We close by confronting our predictions with recent experimental results.

摘要

游动的细胞常常需要在呈现非牛顿流变学特性的流体中自行推进。虽然过去的理论研究似乎表明,复杂流体产生的应力会系统性地阻碍低雷诺数运动,但实验观察结果却显示运动增强是有可能的。在本文中,我们提出了一种关于微观游动体在复杂流体中运动增强的物理机制。其依据是,微观结构流体通常会在表面附近发生相分离,从而导致低粘度层的出现,这会促进滑移并降低游动体表面附近的粘性摩擦。我们使用两个模型来探讨这种相分离的结果:一个是流体具有非零表观滑移长度,另一个是对游动体附近薄层中粘度变化进行明确建模。考虑到低雷诺数运动的两种典型设置,即二维薄片和三维细丝的波动运动,我们表明相分离会系统性地提高运动速度,可能会提高几个数量级。最后,我们将我们的预测与最近的实验结果进行了对比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验