Suppr超能文献

基于实验数据的模拟揭示了粘弹性流体中鞭毛游动:流体弹性应力的作用。

Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data.

机构信息

Department of Mathematics, University of California Davis, Davis, CA 95616, USA.

Department of Mechanical Engineering and Applied Mechanics, The University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

J R Soc Interface. 2017 Oct;14(135). doi: 10.1098/rsif.2017.0289.

Abstract

Many important biological functions depend on microorganisms' ability to move in viscoelastic fluids such as mucus and wet soil. The effects of fluid elasticity on motility remain poorly understood, partly because the swimmer strokes depend on the properties of the fluid medium, which obfuscates the mechanisms responsible for observed behavioural changes. In this study, we use experimental data on the gaits of swimming in Newtonian and viscoelastic fluids as inputs to numerical simulations that decouple the swimmer gait and fluid type in order to isolate the effect of fluid elasticity on swimming. In viscoelastic fluids, cells employing the Newtonian gait swim faster but generate larger stresses and use more power, and as a result the viscoelastic gait is more efficient. Furthermore, we show that fundamental principles of swimming based on viscous fluid theory miss important flow dynamics: fluid elasticity provides an elastic memory effect that increases both the forward and backward speeds, and (unlike purely viscous fluids) larger fluid stress accumulates around flagella moving tangent to the swimming direction, compared with the normal direction.

摘要

许多重要的生物功能依赖于微生物在粘弹性流体(如黏液和湿土)中移动的能力。流体弹性对运动的影响仍未被充分理解,部分原因是游泳者的划水动作取决于流体介质的特性,这混淆了导致观察到的行为变化的机制。在这项研究中,我们将游泳的牛顿流体和粘弹性流体的步态实验数据作为输入,用于数值模拟,以分离流体弹性对游泳的影响。在粘弹性流体中,采用牛顿步态的细胞游得更快,但产生的应力更大,消耗的能量更多,因此粘弹性步态更有效。此外,我们还表明,基于粘性流体理论的游泳基本原理忽略了重要的流动动力学:流体弹性提供了一种弹性记忆效应,增加了前进和后退的速度,并且(与纯粘性流体不同)与垂直方向相比,沿游泳方向运动的鞭毛周围会积聚更大的流体应力。

相似文献

2
Flagellar kinematics and swimming of algal cells in viscoelastic fluids.
Sci Rep. 2015 Mar 17;5:9190. doi: 10.1038/srep09190.
3
Effect of fluid elasticity on the emergence of oscillations in an active elastic filament.
J R Soc Interface. 2024 May;21(214):20240046. doi: 10.1098/rsif.2024.0046. Epub 2024 May 22.
4
Force-free swimming of a model helical flagellum in viscoelastic fluids.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19516-20. doi: 10.1073/pnas.1113082108. Epub 2011 Nov 21.
5
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids.
Phys Rev E. 2017 Jun;95(6-1):062416. doi: 10.1103/PhysRevE.95.062416. Epub 2017 Jun 23.
6
Small-amplitude swimmers can self-propel faster in viscoelastic fluids.
J Theor Biol. 2015 Oct 7;382:345-55. doi: 10.1016/j.jtbi.2015.06.045. Epub 2015 Jul 8.
7
Resistive force theory and wave dynamics in swimming flagellar apparatus isolated from .
Soft Matter. 2021 Feb 19;17(6):1601-1613. doi: 10.1039/d0sm01969k.
8
The orientation of swimming biflagellates in shear flows.
Bull Math Biol. 2012 Jan;74(1):232-55. doi: 10.1007/s11538-011-9673-1. Epub 2011 Jul 9.
9
An immersed boundary method for two-phase fluids and gels and the swimming of through viscoelastic fluids.
Phys Fluids (1994). 2016 Jan;28(1):011901. doi: 10.1063/1.4938174. Epub 2016 Jan 6.
10
Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.
Phys Rev E. 2017 Nov;96(5-1):052610. doi: 10.1103/PhysRevE.96.052610. Epub 2017 Nov 27.

引用本文的文献

1
Quantification of flagellar gait changes with combined shape mode analysis and swimming simulations.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240505. doi: 10.1098/rsta.2024.0505.
2
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids.
J Fluid Mech. 2024 Nov 25;999. doi: 10.1017/jfm.2024.666. Epub 2024 Nov 11.
3
Effect of fluid elasticity on the emergence of oscillations in an active elastic filament.
J R Soc Interface. 2024 May;21(214):20240046. doi: 10.1098/rsif.2024.0046. Epub 2024 May 22.
4
Acoustic Actuators for the Manipulation of Micro/Nanorobots: State-of-the-Art and Future Outlooks.
Micromachines (Basel). 2024 Jan 26;15(2):186. doi: 10.3390/mi15020186.
5
The three-dimensional coarse-graining formulation of interacting elastohydrodynamic filaments and multi-body microhydrodynamics.
J R Soc Interface. 2023 May;20(202):20230021. doi: 10.1098/rsif.2023.0021. Epub 2023 May 31.
6
An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids.
Eur Phys J E Soft Matter. 2021 Feb 8;44(1):1. doi: 10.1140/epje/s10189-020-00005-6.
7
Immersed Methods for Fluid-Structure Interaction.
Annu Rev Fluid Mech. 2020;52:421-448. doi: 10.1146/annurev-fluid-010719-060228. Epub 2019 Sep 5.

本文引用的文献

1
Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella.
Micromachines (Basel). 2016 Feb 8;7(2):25. doi: 10.3390/mi7020025.
2
Artificial Swimmers Propelled by Acoustically Activated Flagella.
Nano Lett. 2016 Aug 10;16(8):4968-74. doi: 10.1021/acs.nanolett.6b01601. Epub 2016 Aug 1.
3
Soft micromachines with programmable motility and morphology.
Nat Commun. 2016 Jul 22;7:12263. doi: 10.1038/ncomms12263.
4
Cellular forces and matrix assembly coordinate fibrous tissue repair.
Nat Commun. 2016 Mar 16;7:11036. doi: 10.1038/ncomms11036.
5
Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots.
Nat Mater. 2016 Jun;15(6):647-53. doi: 10.1038/nmat4569. Epub 2016 Feb 15.
6
ATP Consumption of Eukaryotic Flagella Measured at a Single-Cell Level.
Biophys J. 2015 Dec 15;109(12):2562-2573. doi: 10.1016/j.bpj.2015.11.003.
7
Green Algae as Model Organisms for Biological Fluid Dynamics.
Annu Rev Fluid Mech. 2015 Jan 1;47:343-375. doi: 10.1146/annurev-fluid-010313-141426.
8
Running and tumbling with E. coli in polymeric solutions.
Sci Rep. 2015 Oct 28;5:15761. doi: 10.1038/srep15761.
9
Flagellar kinematics and swimming of algal cells in viscoelastic fluids.
Sci Rep. 2015 Mar 17;5:9190. doi: 10.1038/srep09190.
10
Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport.
Environ Sci Technol. 2015 Apr 7;49(7):4498-505. doi: 10.1021/es5056484. Epub 2015 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验