Department of Mathematics, Imperial College London, London, UK.
Department of Mathematics, Imperial College London, London, UK
J R Soc Interface. 2018 Nov 28;15(148):20180592. doi: 10.1098/rsif.2018.0592.
Swimming cells and microorganisms must often move through complex fluids that contain an immersed microstructure such as polymer molecules or filaments. In many important biological processes, such as mammalian reproduction and bacterial infection, the size of the immersed microstructure is comparable to that of the swimming cells. This leads to discrete swimmer-microstructure interactions that alter the swimmer's path and speed. In this paper, we use a combination of detailed simulation and data-driven stochastic models to examine the motion of a planar undulatory swimmer in an environment of spherical obstacles tethered via linear springs to random points in the plane of locomotion. We find that, depending on environmental parameters, the interactions with the obstacles can enhance swimming speeds or prevent the swimmer from moving at all. We also show how the discrete interactions produce translational and angular velocity fluctuations that over time lead to diffusive behaviour primarily due to the coupling of swimming and rotational diffusion. Our results demonstrate that direct swimmer-microstructure interactions can produce changes in swimmer motion that may have important implications for the spreading of cell populations in or the trapping of harmful pathogens by complex fluids.
游泳细胞和微生物必须经常在含有浸入式微观结构的复杂流体中移动,例如聚合物分子或纤维。在许多重要的生物过程中,例如哺乳动物繁殖和细菌感染,浸入式微观结构的大小与游泳细胞相当。这会导致离散的游泳者-微观结构相互作用,从而改变游泳者的路径和速度。在本文中,我们使用详细模拟和数据驱动的随机模型的组合来研究平面波动游泳者在通过线性弹簧系在运动平面上的随机点的球形障碍物环境中的运动。我们发现,根据环境参数的不同,与障碍物的相互作用可以提高游泳速度,或者完全阻止游泳者移动。我们还展示了离散相互作用如何产生平移和角速度波动,这些波动随着时间的推移导致扩散行为,主要是由于游泳和旋转扩散的耦合。我们的结果表明,直接的游泳者-微观结构相互作用会导致游泳者运动的变化,这可能对复杂流体中细胞群体的扩散或有害病原体的捕获产生重要影响。