Suppr超能文献

通过区分肿块和非肿块病变来提高乳腺磁共振成像计算机辅助诊断的准确性。

Improving the Accuracy of Computer-aided Diagnosis for Breast MR Imaging by Differentiating between Mass and Nonmass Lesions.

机构信息

From the Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave, M6-623e, Toronto, ON, Canada M4N 3M5; and Department of Imaging Research, Sunnybrook Research Institute, Toronto, Ont, Canada.

出版信息

Radiology. 2016 Mar;278(3):679-88. doi: 10.1148/radiol.2015150241. Epub 2015 Sep 18.

Abstract

PURPOSE

To determine suitable features and optimal classifier design for a computer-aided diagnosis (CAD) system to differentiate among mass and nonmass enhancements during dynamic contrast material-enhanced magnetic resonance (MR) imaging of the breast.

MATERIALS AND METHODS

Two hundred eighty histologically proved mass lesions and 129 histologically proved nonmass lesions from MR imaging studies were retrospectively collected. The institutional research ethics board approved this study and waived informed consent. Breast Imaging Reporting and Data System classification of mass and nonmass enhancement was obtained from radiologic reports. Image data from dynamic contrast-enhanced MR imaging were extracted and analyzed by using feature selection techniques and binary, multiclass, and cascade classifiers. Performance was assessed by measuring the area under the receiver operating characteristics curve (AUC), sensitivity, and specificity. Bootstrap cross validation was used to predict the best classifier for the classification task of mass and nonmass benign and malignant breast lesions.

RESULTS

A total of 176 features were extracted. Feature relevance ranking indicated unequal importance of kinetic, texture, and morphologic features for mass and nonmass lesions. The best classifier performance was a two-stage cascade classifier (mass vs nonmass followed by malignant vs benign classification) (AUC, 0.91; 95% confidence interval (CI): 0.88, 0.94) compared with one-shot classifier (ie, all benign vs malignant classification) (AUC, 0.89; 95% CI: 0.85, 0.92). The AUC was 2% higher for cascade (median percent difference obtained by using paired bootstrapped samples) and was significant (P = .0027). Our proposed two-stage cascade classifier decreases the overall misclassification rate by 12%, with 72 of 409 missed diagnoses with cascade versus 82 of 409 missed diagnoses with one-shot classifier.

CONCLUSION

Separately optimizing feature selection and training classifiers for mass and nonmass lesions improves the accuracy of CAD for breast MR imaging. By cascading classifiers, we achieved a significant improvement in performance with respect to the use of a one-shot classifier. Our cascaded classifier may provide an advantage for screening women at high risk for breast cancer, in whom the ability to diagnose cancers at an early stage is of primary importance.

摘要

目的

确定适合计算机辅助诊断(CAD)系统的特征和最优分类器设计,以便在乳腺动态对比增强磁共振成像中区分肿块和非肿块强化。

材料与方法

回顾性收集 280 例经组织学证实的肿块病变和 129 例经组织学证实的非肿块病变的磁共振成像研究资料。机构研究伦理委员会批准了这项研究,并豁免了知情同意。从放射学报告中获得乳腺影像报告和数据系统(BI-RADS)对肿块和非肿块强化的分类。通过特征选择技术和二进制、多类和级联分类器对动态对比增强磁共振成像的图像数据进行提取和分析。通过测量受试者工作特征曲线(ROC)下面积(AUC)、灵敏度和特异性来评估性能。使用引导交叉验证来预测用于分类乳腺良恶性肿块和非肿块病变的最佳分类器。

结果

共提取 176 个特征。特征相关性排序表明,对于肿块和非肿块病变,动力学、纹理和形态特征的重要性并不相同。最佳分类器性能为两阶段级联分类器(肿块与非肿块,然后是恶性与良性分类)(AUC,0.91;95%置信区间(CI):0.88,0.94),优于单次分类器(即所有良性与恶性分类)(AUC,0.89;95%CI:0.85,0.92)。级联(使用配对引导样本获得的中位数百分比差异)的 AUC 高 2%,差异具有统计学意义(P=0.0027)。我们提出的两阶段级联分类器将整体误分类率降低了 12%,级联时有 72 例 409 例漏诊,单次分类时有 82 例 409 例漏诊。

结论

分别针对肿块和非肿块病变优化特征选择和训练分类器,可提高乳腺磁共振成像 CAD 的准确性。通过级联分类器,我们在使用单次分类器的基础上显著提高了性能。我们的级联分类器可能为高危乳腺癌女性筛查提供优势,在这些女性中,早期诊断癌症的能力至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验