Suppr超能文献

MELLO:用于来自自我追踪和生活日志设备的数据术语的医学生活日志本体。

MELLO: Medical lifelog ontology for data terms from self-tracking and lifelog devices.

作者信息

Kim Hye Hyeon, Lee Soo Youn, Baik Su Youn, Kim Ju Han

机构信息

Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul 110799, South Korea.

Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul 110799, South Korea; Systems Biomedical Informatics National Core Research Center (SBI-NCRC), Seoul National University College of Medicine, Seoul 110799, South Korea.

出版信息

Int J Med Inform. 2015 Dec;84(12):1099-110. doi: 10.1016/j.ijmedinf.2015.08.005. Epub 2015 Aug 17.

Abstract

OBJECTIVE

The increasing use of health self-tracking devices is making the integration of heterogeneous data and shared decision-making more challenging. Computational analysis of lifelog data has been hampered by the lack of semantic and syntactic consistency among lifelog terms and related ontologies. Medical lifelog ontology (MELLO) was developed by identifying lifelog concepts and relationships between concepts, and it provides clear definitions by following ontology development methods. MELLO aims to support the classification and semantic mapping of lifelog data from diverse health self-tracking devices.

METHODS

MELLO was developed using the General Formal Ontology method with a manual iterative process comprising five steps: (1) defining the scope of lifelog data, (2) identifying lifelog concepts, (3) assigning relationships among MELLO concepts, (4) developing MELLO properties (e.g., synonyms, preferred terms, and definitions) for each MELLO concept, and (5) evaluating representative layers of the ontology content. An evaluation was performed by classifying 11 devices into 3 classes by subjects, and performing pairwise comparisons of lifelog terms among 5 devices in each class as measured using the Jaccard similarity index.

RESULTS

MELLO represents a comprehensive knowledge base of 1998 lifelog concepts, with 4996 synonyms for 1211 (61%) concepts and 1395 definitions for 926 (46%) concepts. The MELLO Browser and MELLO Mapper provide convenient access and annotating non-standard proprietary terms with MELLO (http://mello.snubi.org/). MELLO covers 88.1% of lifelog terms from 11 health self-tracking devices and uses simple string matching to match semantically similar terms provided by various devices that are not yet integrated. The results from the comparisons of Jaccard similarities between simple string matching and MELLO matching revealed increases of 2.5, 2.2, and 5.7 folds for physical activity,body measure, and sleep classes, respectively.

CONCLUSIONS

MELLO is the first ontology for representing health-related lifelog data with rich contents including definitions, synonyms, and semantic relationships. MELLO fills the semantic gap between heterogeneous lifelog terms that are generated by diverse health self-tracking devices. The unified representation of lifelog terms facilitated by MELLO can help describe an individual's lifestyle and environmental factors, which can be included with user-generated data for clinical research and thereby enhance data integration and sharing.

摘要

目的

健康自我追踪设备的使用日益增加,使得异构数据的整合和共同决策变得更具挑战性。生活日志数据的计算分析因生活日志术语与相关本体之间缺乏语义和句法一致性而受到阻碍。医学生活日志本体(MELLO)通过识别生活日志概念及其之间的关系而开发,并遵循本体开发方法提供清晰的定义。MELLO旨在支持来自各种健康自我追踪设备的生活日志数据的分类和语义映射。

方法

MELLO采用通用形式本体方法开发,通过一个包括五个步骤的手动迭代过程:(1)定义生活日志数据的范围;(2)识别生活日志概念;(3)确定MELLO概念之间的关系;(4)为每个MELLO概念开发MELLO属性(如同义词、首选术语和定义);(5)评估本体内容的代表性层次。通过让受试者将11种设备分为3类,并使用杰卡德相似性指数对每类中的5种设备之间的生活日志术语进行成对比较来进行评估。

结果

MELLO代表了一个包含1998个生活日志概念的综合知识库,其中1211个(61%)概念有4996个同义词,926个(46%)概念有1395个定义。MELLO浏览器和MELLO映射器提供了便捷的访问方式,并能用MELLO(http://mello.snubi.org/)对非标准专有术语进行注释。MELLO涵盖了11种健康自我追踪设备中88.1%的生活日志术语,并使用简单字符串匹配来匹配各种尚未整合的设备提供的语义相似的术语。简单字符串匹配与MELLO匹配之间的杰卡德相似性比较结果显示,身体活动、身体测量和睡眠类别的相似性分别提高了2.5倍、2.2倍和5.7倍。

结论

MELLO是第一个用于表示与健康相关的生活日志数据的本体,具有包括定义、同义词和语义关系在内的丰富内容。MELLO填补了由各种健康自我追踪设备生成的异构生活日志术语之间的语义空白。MELLO促成的生活日志术语的统一表示有助于描述个人的生活方式和环境因素,这些因素可与用户生成的数据一起用于临床研究,从而增强数据整合和共享。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验