Brunt Vienna E, Fujii Naoto, Minson Christopher T
Department of Human Physiology, University of Oregon, Eugene, Oregon; and.
Department of Human Physiology, University of Oregon, Eugene, Oregon; and Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.
J Appl Physiol (1985). 2015 Nov 1;119(9):1015-22. doi: 10.1152/japplphysiol.00201.2015. Epub 2015 Sep 17.
Cutaneous acetylcholine (ACh)-mediated dilation is commonly used to assess microvascular function, but the mechanisms of dilation are poorly understood. Depending on dose and method of administration, nitric oxide (NO) and prostanoids are involved to varying extents and the roles of endothelial-derived hyperpolarizing factors (EDHFs) are unclear. In the present study, five incremental doses of ACh (0.01-100 mM) were delivered either as a 1-min bolus (protocol 1, n = 12) or as a ≥20-min continuous infusion (protocol 2, n = 10) via microdialysis fibers infused with 1) lactated Ringer, 2) tetraethylammonium (TEA) [a calcium-activated potassium channel (KCa) and EDHF inhibitor], 3) L-NNA+ketorolac [NO synthase (NOS) and cyclooxygenase (COX) inhibitors], and 4) TEA+L-NNA+Ketorolac. The hyperemic response was characterized as peak and area under the curve (AUC) cutaneous vascular conductance (CVC) for bolus infusions or plateau CVC for continuous infusions, and reported as %maximal CVC. In protocol 1, TEA, alone and combined with NOS+COX inhibition, attenuated peak CVC (100 mM Ringer 59 ± 6% vs. TEA 43 ± 5%, P < 0.05; L-NNA+ketorolac 35 ± 4% vs. TEA+L-NNA+ketorolac 25 ± 4%, P < 0.05) and AUC (Ringer 25,414 ± 3,528 vs. TEA 21,403 ± 3,416%·s, P < 0.05; L-NNA+ketorolac 25,628 ± 3,828%(.)s vs. TEA+L-NNA+ketorolac 20,772 ± 3,711%·s, P < 0.05), although these effects were only significant at the highest dose of ACh. At lower doses, TEA lengthened the total time of the hyperemic response (10 mM Ringer 609 ± 78 s vs. TEA 860 ± 67 s, P < 0.05). In protocol 2, TEA alone did not affect plateau CVC, but attenuated plateau in combination with NOS+COX inhibition (100 mM 50.4 ± 6.6% vs. 30.9 ± 6.3%, P < 0.05). Therefore, EDHFs contribute to cutaneous ACh-mediated dilation, but their relative contribution is altered by the dose and infusion procedure.
皮肤乙酰胆碱(ACh)介导的血管舒张常用于评估微血管功能,但血管舒张的机制尚不清楚。根据给药剂量和方法,一氧化氮(NO)和前列腺素在不同程度上参与其中,而内皮衍生超极化因子(EDHFs)的作用尚不清楚。在本研究中,通过微透析纤维以1分钟推注(方案1,n = 12)或≥20分钟持续输注(方案2,n = 10)的方式给予五个递增剂量的ACh(0.01 - 100 mM),微透析纤维中注入1)乳酸林格液、2)四乙铵(TEA)[一种钙激活钾通道(KCa)和EDHF抑制剂]、3)L - NNA + 酮咯酸[一氧化氮合酶(NOS)和环氧化酶(COX)抑制剂]以及4)TEA + L - NNA + 酮咯酸。充血反应的特征为推注时的峰值和曲线下面积(AUC)皮肤血管传导率(CVC)或持续输注时的平台期CVC,并报告为最大CVC的百分比。在方案1中,单独使用TEA以及与NOS + COX抑制联合使用时,均减弱了峰值CVC(100 mM林格液时为59 ± 6%,TEA时为43 ± 5%,P < 0.05;L - NNA + 酮咯酸时为35 ± 4%,TEA + L - NNA + 酮咯酸时为25 ± 4%,P < 0.05)和AUC(林格液时为25,414 ± 3,528,TEA时为21,403 ± 3,416%·s,P < 0.05;L - NNA + 酮咯酸时为25,628 ± 3,828%·s,TEA + L - NNA + 酮咯酸时为20,772 ± 3,711%·s,P < 0.05),尽管这些作用仅在最高剂量的ACh时显著。在较低剂量时,TEA延长了充血反应的总时间(10 mM林格液时为609 ± 78秒,TEA时为860 ± 67秒,P < 0.05)。在方案2中单独使用TEA不影响平台期CVC,但与NOS + COX抑制联合使用时减弱了平台期CVC(100 mM时为50.4 ± 6.6%,vs. 30.9 ± 6.3%,P < 0.05)。因此,EDHFs有助于皮肤ACh介导的血管舒张,但其相对贡献会因剂量和输注方式而改变。