Brunt Vienna E, Fujii Naoto, Minson Christopher T
Department of Human Physiology, University of Oregon, Eugene, Oregon.
J Appl Physiol (1985). 2013 Nov 1;115(9):1290-6. doi: 10.1152/japplphysiol.00358.2013. Epub 2013 Aug 22.
In human cutaneous microvasculature, endothelium-derived hyperpolarizing factors (EDHFs) account for a large portion of vasodilation associated with local stimuli. Thus we sought to determine the role of EDHFs in active vasodilation (AVD) to passive heating in two protocols. Whole body heating was achieved using water-perfused suits (core temperature increase of 0.8-1.0°C), and skin blood flow was measured using laser-Doppler flowmetry. In the first protocol, four sites were perfused continuously via microdialysis with: 1) control; 2) tetraethylammonium (TEA) to block calcium-activated potassium (KCa) channels, and thus the actions of EDHFs; 3) N-nitro-l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase (NOS); and 4) TEA + l-NAME (n = 8). Data are presented as percent maximal cutaneous vascular conductance (CVC). TEA had no effect on AVD (CVC during heated plateau: control 57.4 ± 4.9% vs. TEA 63.2 ± 5.2%, P = 0.27), indicating EDHFs are not obligatory. l-NAME attenuated plateau CVC to 33.7 ± 5.4% (P < 0.01 vs. control); while TEA + l-NAME augmented plateau CVC compared with l-NAME alone (49.7 ± 5.3%, P = 0.02). From these data, it appears combined blockade of EDHFs and NOS necessitates dilation through other means, possibly through inward rectifier (KIR) and/or ATP-sensitive (KATP) potassium channels. To test this second hypothesis, we measured AVD at the following sites (n = 8): 1) control, 2) l-NAME, 3) l-NAME + TEA, and 4) l-NAME + TEA + barium chloride (BaCl2; KIR and KATP blocker). The addition of BaCl2 to l-NAME + TEA reduced plateau CVC to 32.7 ± 6.6% (P = 0.02 vs. l-NAME + TEA), which did not differ from the l-NAME site. These data combined demonstrate a complex interplay between vasodilatory pathways, with cross-talk between NO, KCa channels, and KIR and/or KATP channels.
在人体皮肤微血管系统中,内皮衍生超极化因子(EDHFs)在与局部刺激相关的血管舒张中占很大比例。因此,我们试图通过两种方案确定EDHFs在被动加热引起的主动血管舒张(AVD)中的作用。使用水灌注服实现全身加热(核心温度升高0.8 - 1.0°C),并使用激光多普勒血流仪测量皮肤血流量。在第一个方案中,通过微透析连续灌注四个部位:1)对照;2)四乙铵(TEA)以阻断钙激活钾(KCa)通道,从而阻断EDHFs的作用;3)N-硝基-L-精氨酸甲酯(L-NAME)以抑制一氧化氮合酶(NOS);4)TEA + L-NAME(n = 8)。数据以最大皮肤血管传导率(CVC)的百分比表示。TEA对AVD无影响(加热平台期的CVC:对照57.4±4.9% vs. TEA 63.2±5.2%,P = 0.27),表明EDHFs并非必需。L-NAME将平台期CVC降低至33.7±5.4%(与对照相比,P < 0.01);而TEA + L-NAME与单独使用L-NAME相比,增加了平台期CVC(49.7±5.3%,P = 0.02)。从这些数据来看,似乎同时阻断EDHFs和NOS需要通过其他方式进行血管舒张,可能是通过内向整流(KIR)和/或ATP敏感性(KATP)钾通道。为了验证这第二个假设,我们在以下部位测量了AVD(n = 8):1)对照,2)L-NAME组,3)L-NAME + TEA组,4)L-NAME + TEA + 氯化钡(BaCl2;KIR和KATP阻断剂)组。在L-NAME + TEA组中添加BaCl2将平台期CVC降低至32.7±6.6%(与L-NAME + TEA组相比,P = 0.02),这与L-NAME组无差异。这些数据共同证明了血管舒张途径之间存在复杂的相互作用,NO、KCa通道以及KIR和/或KATP通道之间存在相互影响。