Suppr超能文献

实时四维光学相干断层扫描揭示小鼠突变体中的胚胎心脏表型。

Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant.

作者信息

Lopez Andrew L, Wang Shang, Larin Kirill V, Overbeek Paul A, Larina Irina V

机构信息

Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States.

Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United StatesbUniversity of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston 77204, United StatescSamara State Aer.

出版信息

J Biomed Opt. 2015;20(9):090501. doi: 10.1117/1.JBO.20.9.090501.

Abstract

Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.

摘要

在模式生物中对发育缺陷进行高效表型分析,对于理解人类正常发育和先天性异常的基因调控至关重要。我们之前报道过,光学相干断层扫描(OCT)结合活体胚胎培养是用于小鼠胚胎成像和四维(4-D)心脏动力学分析的一种有价值的工具;然而,其分析具有心脏表型的小鼠突变体的能力此前尚未被探索。在此,我们报告了对Wdr19小鼠突变体胚胎心脏的四维(三维+时间)OCT成像及分析,揭示了心脏环化缺陷。对心脏环化的定量分析显示,突变体胚胎与对照胚胎之间存在统计学上的显著差异。我们的结果表明,实时四维OCT成像为表征小鼠模型中的胚胎心脏功能提供了一种强大的表型分析方法。

相似文献

3
Dynamic Imaging of Mouse Embryos and Cardiac Development in Static Culture.
Methods Mol Biol. 2021;2206:129-141. doi: 10.1007/978-1-0716-0916-3_10.
4
Three-dimensional, in vivo MRI with self-gating and image coregistration in the mouse.
Magn Reson Med. 2009 May;61(5):1148-57. doi: 10.1002/mrm.21945.
5
Optical Coherence Tomography for live imaging of mammalian development.
Curr Opin Genet Dev. 2011 Oct;21(5):579-84. doi: 10.1016/j.gde.2011.09.004. Epub 2011 Sep 29.
6
Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography.
J Biophotonics. 2016 Aug;9(8):837-47. doi: 10.1002/jbio.201500314. Epub 2016 Mar 21.
8
In utero phenotyping of mouse embryonic vasculature with MRI.
Magn Reson Med. 2012 Jan;67(1):251-7. doi: 10.1002/mrm.22991. Epub 2011 May 16.
9
In vivo gated 4D imaging of the embryonic heart using optical coherence tomography.
J Biomed Opt. 2007 May-Jun;12(3):030505. doi: 10.1117/1.2747208.
10
A feasibility study of OCT for anatomical and vascular phenotyping of mouse embryo.
J Biophotonics. 2020 May;13(5):e201960225. doi: 10.1002/jbio.201960225. Epub 2020 Mar 1.

引用本文的文献

1
Imaging Approaches and the Quantitative Analysis of Heart Development.
J Cardiovasc Dev Dis. 2023 Mar 29;10(4):145. doi: 10.3390/jcdd10040145.
3
Mouse embryo phenotyping with optical coherence tomography.
Front Cell Dev Biol. 2022 Sep 9;10:1000237. doi: 10.3389/fcell.2022.1000237. eCollection 2022.
4
Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects.
J Cardiovasc Dev Dis. 2022 Sep 8;9(9):303. doi: 10.3390/jcdd9090303.
5
Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart.
J Cardiovasc Dev Dis. 2022 Aug 15;9(8):267. doi: 10.3390/jcdd9080267.
6
Embryonic Mouse Cardiodynamic OCT Imaging.
J Cardiovasc Dev Dis. 2020 Oct 4;7(4):42. doi: 10.3390/jcdd7040042.
7
Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart.
J Biomed Opt. 2020 Aug;25(8):1-19. doi: 10.1117/1.JBO.25.8.086001.
8
Optogenetic cardiac pacing in cultured mouse embryos under imaging guidance.
J Biophotonics. 2020 Nov;13(11):e202000223. doi: 10.1002/jbio.202000223. Epub 2020 Aug 18.
9
Label-free optical imaging in developmental biology [Invited].
Biomed Opt Express. 2020 Mar 13;11(4):2017-2040. doi: 10.1364/BOE.381359. eCollection 2020 Apr 1.

本文引用的文献

1
Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data.
Quant Imaging Med Surg. 2015 Feb;5(1):125-35. doi: 10.3978/j.issn.2223-4292.2014.11.33.
3
Live confocal microscopy of the developing mouse embryonic yolk sac vasculature.
Methods Mol Biol. 2015;1214:163-72. doi: 10.1007/978-1-4939-1462-3_9.
4
Imaging of cardiovascular development in mammalian embryos using optical coherence tomography.
Methods Mol Biol. 2015;1214:151-61. doi: 10.1007/978-1-4939-1462-3_8.
5
Mutations in WDR19 encoding the intraflagellar transport component IFT144 cause a broad spectrum of ciliopathies.
Pediatr Nephrol. 2014 Aug;29(8):1451-6. doi: 10.1007/s00467-014-2762-2. Epub 2014 Feb 7.
8
Micro-ultrasound for preclinical imaging.
Interface Focus. 2011 Aug 6;1(4):576-601. doi: 10.1098/rsfs.2011.0037. Epub 2011 Jun 8.
9
Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures.
Biomed Opt Express. 2012 Mar 1;3(3):650-60. doi: 10.1364/BOE.3.000650. Epub 2012 Feb 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验