Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239, USA.
J Biomed Opt. 2012 Sep;17(9):96005-1. doi: 10.1117/1.JBO.17.9.096005.
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
最近在光学相干断层扫描(OCT)方面的进展,以及图像重建算法的发展,使得对胚胎心脏进行四维(4-D)(随时间进行三维成像)成像成为可能。为了进一步分析和量化心脏跳动的动力学,需要能够提取心脏形状及其运动的分割程序。大多数先前的研究使用手动提取的形状和测量值来分析心脏图像序列。然而,这既耗时又容易受到操作员间差异的影响。虽然非常需要对 4-D 心脏 OCT 图像进行自动或半自动分析,但这也极具挑战性。本工作提出了一种从早期(管状)胚胎心脏的 4-D OCT 图像中半自动检测和跟踪心脏组织层的稳健算法。我们的算法使用二维(2-D)可变形双直线模型(DLM)来检测目标心脏组织。检测算法使用最大似然估计器,并已成功应用于第三天鸡胚心脏流出道的 4-D 体内 OCT 图像。提取的形状捕捉到了小鸡胚胎心脏流出道壁的动力学,从而能够进一步分析心脏运动。