Suppr超能文献

橙色类胡萝卜素蛋白光激活的局部和全局结构驱动因素。

Local and global structural drivers for the photoactivation of the orange carotenoid protein.

作者信息

Gupta Sayan, Guttman Miklos, Leverenz Ryan L, Zhumadilova Kulyash, Pawlowski Emily G, Petzold Christopher J, Lee Kelly K, Ralston Corie Y, Kerfeld Cheryl A

机构信息

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195;

出版信息

Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):E5567-74. doi: 10.1073/pnas.1512240112. Epub 2015 Sep 18.

Abstract

Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.

摘要

光保护机制对于光合生物的生存至关重要。在蓝细菌中,橙色类胡萝卜素蛋白(OCP)在被强烈蓝光激活时,会与光捕获天线结合并触发多余捕获光能的耗散。通过结合小角X射线散射(SAXS)、X射线羟基自由基足迹法、圆二色性和氢/氘交换质谱,我们确定了光激活后OCP的局部和整体结构变化。SAXS和氢/氘交换数据表明,光激活后会发生整体三级结构变化,包括完全的结构域解离,但二级结构的改变仅限于OCP的N端。微秒级辐射标记确定了与保守残基和结构水分子相关的氢键网络的重排。总体而言,这些数据为OCP激活后局部和整体结构变化的集合提供了实验证据,这些变化对于光保护至关重要。

相似文献

1
Local and global structural drivers for the photoactivation of the orange carotenoid protein.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):E5567-74. doi: 10.1073/pnas.1512240112. Epub 2015 Sep 18.
5
A photoactive carotenoid protein acting as light intensity sensor.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12075-80. doi: 10.1073/pnas.0804636105. Epub 2008 Aug 7.
6
Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation.
Biochemistry. 2016 Feb 23;55(7):1003-9. doi: 10.1021/acs.biochem.6b00013. Epub 2016 Feb 9.
7
The photophysics of the orange carotenoid protein, a light-powered molecular switch.
J Phys Chem B. 2012 Mar 1;116(8):2568-74. doi: 10.1021/jp2108329. Epub 2012 Feb 17.
8
Regulation of Orange Carotenoid Protein Activity in Cyanobacterial Photoprotection.
Plant Physiol. 2015 Sep;169(1):737-47. doi: 10.1104/pp.15.00843. Epub 2015 Jul 20.
10
Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria.
Curr Opin Plant Biol. 2017 Jun;37:1-9. doi: 10.1016/j.pbi.2017.03.010. Epub 2017 Apr 6.

引用本文的文献

3
The Orange Carotenoid Protein Triggers Cyanobacterial Photoprotection by Quenching Bilins via a Structural Switch of Its Carotenoid.
J Am Chem Soc. 2024 Aug 7;146(31):21913-21921. doi: 10.1021/jacs.4c06695. Epub 2024 Jul 26.
4
Structure and function of the light-protective orange carotenoid protein families.
Curr Res Struct Biol. 2024 Apr 16;7:100141. doi: 10.1016/j.crstbi.2024.100141. eCollection 2024.
5
Solution Structures of Two Different FRP-OCP Complexes as Revealed via SEC-SANS.
Int J Mol Sci. 2024 Feb 28;25(5):2781. doi: 10.3390/ijms25052781.
7
How orange carotenoid protein controls the excited state dynamics of canthaxanthin.
Chem Sci. 2023 Sep 22;14(40):11158-11169. doi: 10.1039/d3sc02662k. eCollection 2023 Oct 18.
8
Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations.
Photochem Photobiol Sci. 2023 Jun;22(6):1379-1391. doi: 10.1007/s43630-023-00384-7. Epub 2023 Feb 28.
10
The increasing role of structural proteomics in cyanobacteria.
Essays Biochem. 2023 Mar 29;67(2):269-282. doi: 10.1042/EBC20220095.

本文引用的文献

1
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
2
Regulation of Orange Carotenoid Protein Activity in Cyanobacterial Photoprotection.
Plant Physiol. 2015 Sep;169(1):737-47. doi: 10.1104/pp.15.00843. Epub 2015 Jul 20.
4
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.
6
Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport.
Nature. 2014 Aug 7;512(7512):101-4. doi: 10.1038/nature13382. Epub 2014 Jun 22.
7
Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source.
J Synchrotron Radiat. 2014 Jul;21(Pt 4):690-9. doi: 10.1107/S1600577514007000. Epub 2014 May 16.
9
Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein.
Biochemistry. 2014 Jan 14;53(1):13-9. doi: 10.1021/bi401539w. Epub 2013 Dec 27.
10
Water networks contribute to enthalpy/entropy compensation in protein-ligand binding.
J Am Chem Soc. 2013 Oct 16;135(41):15579-84. doi: 10.1021/ja4075776. Epub 2013 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验