Suppr超能文献

美国首个基于人群的出生缺陷监测项目国家数据质量标准的制定与实施。

Development and implementation of the first national data quality standards for population-based birth defects surveillance programs in the United States.

作者信息

Anderka Marlene, Mai Cara T, Romitti Paul A, Copeland Glenn, Isenburg Jennifer, Feldkamp Marcia L, Krikov Sergey, Rickard Russel, Olney Richard S, Canfield Mark A, Stanton Carol, Mosley Bridget, Kirby Russell S

机构信息

Massachusetts Department of Public Health, 250 Washington St. 5th floor, Boston, MA, 02108, USA.

National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

BMC Public Health. 2015 Sep 19;15:925. doi: 10.1186/s12889-015-2223-2.

Abstract

BACKGROUND

Population-based birth defects surveillance is a core public health activity in the United States (U.S.); however, the lack of national data quality standards has limited the use of birth defects surveillance data across state programs. Development of national standards will facilitate data aggregation and utilization across birth defects surveillance programs in the U.S.

METHODS

Based on national standards for other U.S. public health surveillance programs, existing National Birth Defects Prevention Network (NBDPN) guidelines for conducting birth defects surveillance, and information from birth defects surveillance programs regarding their current data quality practices, we developed 11 data quality measures that focused on data completeness (n = 5 measures), timeliness (n = 2), and accuracy (n = 4). For each measure, we established tri-level performance criteria (1 = rudimentary, 2 = essential, 3 = optimal). In January 2014, we sent birth defects surveillance programs in each state, District of Columbia, Puerto Rico, Centers for Disease Control and Prevention (CDC), and the U.S. Department of Defense Birth and Infant Health Registry an invitation to complete a self-administered NBDPN Standards Data Quality Assessment Tool. The completed forms were electronically submitted to the CDC for analyses.

RESULTS

Of 47 eligible population-based surveillance programs, 45 submitted a completed assessment tool. Two of the 45 programs did not meet minimum inclusion criteria and were excluded; thus, the final analysis included information from 43 programs. Average scores for four of the five completeness performance measures were above level 2. Conversely, the average scores for both timeliness measures and three of the four accuracy measures were below level 2. Surveillance programs using an active case-finding approach scored higher than programs using passive case-finding approaches for the completeness and accuracy measures, whereas their average scores were lower for timeliness measures.

CONCLUSIONS

This initial, nation-wide assessment of data quality across U.S. population-based birth defects surveillance programs highlights areas for improvement. Using this information to identify strengths and weaknesses, the birth defects surveillance community, working through the NBDPN, can enhance and implement a consistent set of standards that can promote uniformity and enable surveillance programs to work towards improving the potential of these programs.

摘要

背景

基于人群的出生缺陷监测是美国一项核心的公共卫生活动;然而,缺乏国家数据质量标准限制了出生缺陷监测数据在各州项目中的使用。制定国家标准将促进美国出生缺陷监测项目间的数据汇总和利用。

方法

基于美国其他公共卫生监测项目的国家标准、现有的国家出生缺陷预防网络(NBDPN)开展出生缺陷监测的指南以及出生缺陷监测项目关于其当前数据质量实践的信息,我们制定了11项数据质量指标,重点关注数据完整性(n = 5项指标)、及时性(n = 2项)和准确性(n = 4项)。对于每项指标,我们建立了三级绩效标准(1 = 基本的,2 = 必要的,3 = 最优的)。2014年1月,我们向每个州、哥伦比亚特区、波多黎各、疾病控制与预防中心(CDC)以及美国国防部出生与婴儿健康登记处的出生缺陷监测项目发出邀请,让其填写一份自行管理的NBDPN标准数据质量评估工具。填好的表格以电子方式提交给CDC进行分析。

结果

在47个符合条件的基于人群的监测项目中,45个提交了完整的评估工具。45个项目中有2个未达到最低纳入标准而被排除;因此,最终分析纳入了43个项目的信息。五项完整性绩效指标中有四项的平均得分高于2级。相反,两项及时性指标以及四项准确性指标中有三项的平均得分低于2级。对于完整性和准确性指标,采用主动病例发现方法的监测项目得分高于采用被动病例发现方法的项目,而在及时性指标方面,其平均得分较低。

结论

此次对美国基于人群的出生缺陷监测项目数据质量进行的首次全国性评估突出了需要改进的领域。利用这些信息来识别优势和不足,出生缺陷监测群体通过NBDPN努力,可以加强并实施一套一致的标准,以促进统一性,并使监测项目能够努力提升这些项目的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/4575466/912feb1d1fcd/12889_2015_2223_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验