Suppr超能文献

通过正交投影设置局部秩约束进行图像分辨率分析:在确定低剂量药物化合物中的应用。

Setting local rank constraints by orthogonal projections for image resolution analysis: application to the determination of a low dose pharmaceutical compound.

机构信息

Technologie Servier, Orléans, France.

Grup de Quimiometria, Dept. Química Analítica, Universitat de Barcelona, Spain.

出版信息

Anal Chim Acta. 2015 Sep 10;892:49-58. doi: 10.1016/j.aca.2015.08.031. Epub 2015 Aug 25.

Abstract

Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used. In this work, an alternative method to set local rank constraints is proposed. The method is based on orthogonal projections pretreatment. For each drug product compound, raw Raman spectra are orthogonally projected to a basis including all the variability from the formulation compounds other than the product of interest. Presence or absence of the compound of interest is obtained by observing the correlations between the orthogonal projected spectra and a pure spectrum orthogonally projected to the same basis. By selecting an appropriate threshold, maps of presence/absence of compounds can be set up for all the product compounds. This method appears as a powerful approach to identify a low dose compound within a pharmaceutical drug product. The maps of presence/absence of compounds can be used as local rank constraints in resolution methods, such as multivariate curve resolution-alternating least squares process in order to improve the resolution of the system. The method proposed is particularly suited for pharmaceutical systems, where the identity of all compounds in the formulations is known and, therefore, the space of interferences can be well defined.

摘要

拉曼化学成像提供了关于药物产品的化学和空间信息。通过对获得的光谱使用分辨率方法,目标是计算纯光谱和图像化合物的分布图。使用多变量曲线分辨交替最小二乘法,使用约束来提高分辨率的性能,并减少最终解决方案的模糊性。已经确定非负性和空间局部秩约束是最有效的约束。在这项工作中,提出了一种设置局部秩约束的替代方法。该方法基于正交投影预处理。对于每种药物产品化合物,原始拉曼光谱被正交投影到一个包含制剂化合物所有变异性的基础上,而不是目标产品。通过观察正交投影光谱与正交投影到同一基础上的纯光谱之间的相关性,可以获得目标化合物的存在或不存在。通过选择适当的阈值,可以为所有产品化合物设置存在/不存在化合物的图谱。该方法似乎是一种在药物产品中识别低剂量化合物的有效方法。化合物的存在/不存在图谱可以用作分辨率方法(如多变量曲线分辨交替最小二乘法)中的局部秩约束,以提高系统的分辨率。所提出的方法特别适用于药物系统,其中制剂中所有化合物的身份都是已知的,因此可以很好地定义干扰空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验