Chemometrics Group, Department of Analytical Chemistry, Universitat de Barcelona, Barcelona, Spain.
Anal Chim Acta. 2011 Oct 31;705(1-2):182-92. doi: 10.1016/j.aca.2011.05.020. Epub 2011 May 20.
MCR-ALS is a resolution method that has been applied in many different fields, such as process analysis, environmental data and, recently, hyperspectral image analysis. In this context, the algorithm provides the distribution maps and the pure spectra of the image constituents from the sole information in the raw image measurement. Based on the distribution maps and spectra obtained, additional information can be easily derived, such as identification of constituents when libraries are available or quantitation within the image, expressed as constituent signal contribution. This work summarizes first the protocol followed for the resolution on two examples of kidney calculi, taken as representations of images with major and minor compounds, respectively. Image segmentation allows separating regions of images according to their pixel similarity and is also relevant in the biomedical field to differentiate healthy from non-healthy regions in tissues or to identify sample regions with distinct properties. Information on pixel similarity is enclosed not only in pixel spectra, but also in other smaller pixel representations, such as PCA scores. In this paper, we propose the use of MCR scores (concentration profiles) for segmentation purposes. K-means results obtained from different pixel representations of the data set are compared. The main advantages of the use of MCR scores are the interpretability of the class centroids and the compound-wise selection and preprocessing of the input information in the segmentation scheme.
MCR-ALS 是一种分辨率方法,已应用于许多不同的领域,如过程分析、环境数据,以及最近的高光谱图像分析。在这种情况下,该算法仅根据原始图像测量中的信息提供图像成分的分布图和纯光谱。基于获得的分布图和光谱,可以轻松推导出其他信息,例如在有库的情况下识别成分或在图像内定量,以表示成分信号贡献。本工作首先总结了在两个肾结石示例上进行分辨率的方案,它们分别代表主要和次要化合物的图像。图像分割允许根据像素相似性将图像区域分开,在生物医学领域也很相关,可以区分组织中的健康和非健康区域,或识别具有不同特性的样本区域。像素相似性的信息不仅包含在像素光谱中,还包含在其他较小的像素表示中,如 PCA 得分。在本文中,我们提出了使用 MCR 得分(浓度分布)进行分割的目的。比较了从数据集的不同像素表示获得的 K-means 结果。使用 MCR 得分的主要优点是类质心的可解释性以及在分割方案中化合物的输入信息的选择和预处理。