Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science , Princetonplein 1, 3584 CC Utrecht, The Netherlands.
Technion - Israel Institute of Technology , Haifa 32000, Israel.
ACS Nano. 2015 Oct 27;9(10):10366-76. doi: 10.1021/acsnano.5b04491. Epub 2015 Sep 28.
Conventional colloidal quantum dots (QDs) suffer from rapid energy losses by nonradiative (Auger) processes, leading to sub-ns lifetimes in all excited states but the lowest-energy single exciton. Suppression of interband Auger decay, such as biexciton Auger recombination, has been achieved with the design of heterostructured core-shell QDs. Auger-like processes are also believed to be responsible for rapid intraband hot-electron cooling in QDs. However, the simultaneous effect of shell growth on interband Auger recombination and intraband hot-electron cooling has not been addressed. Here we investigate how the growth of a CdS shell affects these two relaxation processes in CdSe/CdS core-shell QDs. Using a combination of ultrafast pump-push-probe spectroscopy on the QD ensemble and analysis of the photon statistics from single QDs, we find that Auger losses in the biexciton state are suppressed with increasing shell thickness, while hot-electron cooling remains unaffected. Calculations conducted within an eight-band k·p model confirm the experimental dependence of the biexciton Auger decay on the shell thickness, and provide insights into the factors determining the cooling rate of hot carriers.
传统胶体量子点(QDs)由于非辐射(俄歇)过程而迅速能量损失,导致所有激发态但最低能量单激子的寿命小于纳秒。通过设计异质结构核壳 QD,可以抑制带间俄歇衰变,如双激子俄歇复合。带间俄歇过程也被认为是导致 QD 中快速的带内热电子冷却的原因。然而,壳层生长对带间俄歇复合和带内热电子冷却的同时影响尚未得到解决。在这里,我们研究了 CdS 壳层的生长如何影响 CdSe/CdS 核壳 QD 中的这两个弛豫过程。我们使用在 QD 集合上的超快泵浦推动探测光谱学的组合,并对单个 QD 的光子统计进行分析,发现随着壳层厚度的增加,双激子态中的俄歇损失被抑制,而热电子冷却则不受影响。在八能带 k·p 模型中进行的计算证实了实验中双激子俄歇衰变与壳层厚度的依赖关系,并提供了对决定热载流子冷却速率的因素的深入了解。