School of Physics, Center for Nanochemistry, and Collaborative Innovation Center of Quantum Matter, Peking University , Beijing 100871, China.
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China , Chengdu 610054, China.
ACS Nano. 2015 Nov 24;9(11):11296-301. doi: 10.1021/acsnano.5b04950. Epub 2015 Sep 29.
For alkali-metal-ion batteries, probing the dynamic processes of ion transport in electrodes is critical to gain insights into understanding how the electrode functions and thus how we can improve it. Here, by using in situ high-resolution transmission electron microscopy, we probe the dynamics of Na transport in MoS2 nanostructures in real-time and compare the intercalation kinetics with previous lithium insertion. We find that Na intercalation follows the two-phase reaction mechanism, that is, trigonal prismatic 2H-MoS2 → octahedral 1T-NaMoS2, and the phase boundary is ∼2 nm thick. The velocity of the phase boundary at <10 nm/s is 1 order smaller than that of lithium diffusion, suggesting sluggish kinetics for sodium intercalation. The newly formed 1T-NaMoS2 contains a high density of defects and series superstructure domains with typical sizes of ∼3-5 nm. Our results provide valuable insights into finding suitable Na electrode materials and understanding the properties of transition metal dichalcogenide MoS2.
对于碱金属离子电池,探测电极中离子输运的动态过程对于深入了解电极的工作原理至关重要,从而可以帮助我们改进电极。在这里,我们通过使用原位高分辨率透射电子显微镜实时探测 MoS2 纳米结构中 Na 传输的动力学,并将嵌入动力学与之前的锂离子嵌入进行比较。我们发现,Na 嵌入遵循两相反应机制,即三角棱柱 2H-MoS2→八面体 1T-NaMoS2,相界约 2nm 厚。相界的速度<10nm/s,比锂离子扩散慢一个数量级,表明 Na 嵌入的动力学较为缓慢。新形成的 1T-NaMoS2 含有高密度的缺陷和一系列超结构畴,其典型尺寸约为 3-5nm。我们的研究结果为寻找合适的 Na 电极材料和理解过渡金属二卤化物 MoS2 的性质提供了有价值的见解。