Suppr超能文献

高分辨率跟踪 SnS2 中不对称的锂离子插入和提取及局域结构有序化。

High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

机构信息

Electron Microscopy Laboratory, School of Physics, Peking University , Beijing 100871, China.

Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.

出版信息

Nano Lett. 2016 Sep 14;16(9):5582-8. doi: 10.1021/acs.nanolett.6b02136. Epub 2016 Aug 12.

Abstract

In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.

摘要

在可充电锂离子电池中,锂离子在电极中的输运动力学和相变途径在很大程度上决定了电池的倍率性能和能量效率。实时、原子尺度跟踪电极中完全可逆的锂离子插入和提取过程,这将最终导致对电极如何工作以及为什么会失效的机理理解,这是非常理想的,但也极具挑战性。在这里,我们通过原位高分辨率 TEM 方法跟踪范德华相互作用主导的 SnS2 中的锂离子插入和提取。我们发现,锂离子的插入是通过快速的两相反应形成膨胀和有缺陷的 LiSnS2 来实现的,而锂离子的提取最初涉及具有 1-4nm 尺寸的中间超结构 Li0.5SnS2 畴的不均匀形核。密度泛函理论计算表明,Li0.5SnS2 在动力学上是有利的,结构上也是稳定的。不对称的反应途径可能为层状电极材料中电化学的机理理解提供有启发性的见解,也可能为插层电极材料中电压滞后的起源的公认解释提供可能的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验