Shu Haibo, Li Feng, Hu Chenli, Liang Pei, Cao Dan, Chen Xiaoshuang
College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
College of Science, China Jiliang University, 310018 Hangzhou, China.
Nanoscale. 2016 Feb 7;8(5):2918-26. doi: 10.1039/c5nr07909h.
Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (∼0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.
二维(2D)层状二硫化钼(MoS2)纳米片作为锂离子电池(LIBs)的负极材料具有巨大潜力,但它们的循环性能仍然较差。提高电极材料的循环稳定性取决于对其在锂化过程中动态结构演变和反应动力学的深入理解。在此,通过使用第一性原理计算和从头算分子动力学模拟,研究了锂离子嵌入的MoS2基纳米结构的热力学相图和锂化动力学。我们的结果表明,在遵循逐层解离机制的放电过程中,锂离子的持续嵌入会导致2H相MoS2纳米片的结构破坏。同时,由于超低的转变势垒(约0.1 eV),锂离子的嵌入导致MoS2纳米片从2H相转变为1T相。我们发现这种相变可以减缓锂化过程中MoS2纳米片的解离。该结果可用于解释关于MoS2基负极材料在首次和随后放电之间快速容量衰减的广泛实验观察。为了抑制锂化过程中MoS2纳米片的解离,我们提出了一种构建三明治状石墨烯/MoS2/石墨烯结构的策略,该结构在充放电过程中具有高化学稳定性、优异的导电性和高锂离子迁移率,这意味着有可能改善负极的循环性能。这项工作为合理设计具有优异循环稳定性和电化学性能的LIBs层状过渡金属二硫化物(TMD)负极材料开辟了一条新途径。