Schmoller Kurt M, Turner J J, Kõivomägi M, Skotheim Jan M
Department of Biology, Stanford University, Stanford, California 94305, USA.
Nature. 2015 Oct 8;526(7572):268-72. doi: 10.1038/nature14908. Epub 2015 Sep 21.
Cell size fundamentally affects all biosynthetic processes by determining the scale of organelles and influencing surface transport. Although extensive studies have identified many mutations affecting cell size, the molecular mechanisms underlying size control have remained elusive. In the budding yeast Saccharomyces cerevisiae, size control occurs in G1 phase before Start, the point of irreversible commitment to cell division. It was previously thought that activity of the G1 cyclin Cln3 increased with cell size to trigger Start by initiating the inhibition of the transcriptional inhibitor Whi5 (refs 6-8). Here we show that although Cln3 concentration does modulate the rate at which cells pass Start, its synthesis increases in proportion to cell size so that its total concentration is nearly constant during pre-Start G1. Rather than increasing Cln3 activity, we identify decreasing Whi5 activity--due to the dilution of Whi5 by cell growth--as a molecular mechanism through which cell size controls proliferation. Whi5 is synthesized in S/G2/M phases of the cell cycle in a largely size-independent manner. This results in smaller daughter cells being born with higher Whi5 concentrations that extend their pre-Start G1 phase. Thus, at its most fundamental level, size control in budding yeast results from the differential scaling of Cln3 and Whi5 synthesis rates with cell size. More generally, our work shows that differential size-dependency of protein synthesis can provide an elegant mechanism to coordinate cellular functions with growth.
细胞大小通过决定细胞器的规模和影响表面运输,从根本上影响所有生物合成过程。尽管广泛的研究已经鉴定出许多影响细胞大小的突变,但大小控制背后的分子机制仍然难以捉摸。在出芽酵母酿酒酵母中,大小控制发生在细胞周期起始点“Start”之前的G1期,“Start”是细胞对细胞分裂做出不可逆承诺的点。以前人们认为,G1期细胞周期蛋白Cln3的活性随着细胞大小的增加而增加,通过启动对转录抑制因子Whi5的抑制作用来触发“Start”(参考文献6 - 8)。在这里,我们表明,虽然Cln3的浓度确实会调节细胞通过“Start”的速率,但其合成与细胞大小成比例增加,因此在“Start”前的G1期其总浓度几乎保持恒定。我们发现,不是Cln3活性增加,而是由于细胞生长导致Whi5被稀释,Whi5活性降低,这是细胞大小控制增殖的一种分子机制。Whi5在细胞周期的S/G2/M期以基本不依赖大小的方式合成。这导致较小的子细胞出生时具有较高的Whi5浓度,从而延长其“Start”前的G1期。因此,在最基本的层面上,出芽酵母中的大小控制是由Cln3和Whi5合成速率与细胞大小的差异缩放导致的。更一般地说,我们的工作表明,蛋白质合成的不同大小依赖性可以提供一种优雅的机制,将细胞功能与生长协调起来。