Boselli Francesco, Vermot Julien
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
Methods. 2016 Feb 1;94:129-34. doi: 10.1016/j.ymeth.2015.09.017. Epub 2015 Sep 21.
Hemodynamic shear stress is sensed by the endocardial cells composing the inner cell layer of the heart, and plays a major role in cardiac morphogenesis. Yet, the underlying hemodynamics and the associated mechanical stimuli experienced by endocardial cells remains poorly understood. Progress in the field has been hampered by the need for high temporal resolution imaging allowing the flow profiles generated in the beating heart to be resolved. To fill this gap, we propose a method to analyze the wall dynamics, the flow field, and the wall shear stress of the developing zebrafish heart. This method combines live confocal imaging and computational fluid dynamics to overcome difficulties related to live imaging of blood flow in the developing heart. To provide an example of the applicability of the method, we discuss the hemodynamic frequency content sensed by endocardial cells at the onset of valve formation, and how the fundamental frequency of the wall shear stress represents a unique mechanical cue to endocardial, heart-valve precursors.
血流动力学剪切应力由构成心脏内层细胞层的心内膜细胞感知,并在心脏形态发生中起主要作用。然而,心内膜细胞所经历的潜在血流动力学和相关机械刺激仍知之甚少。该领域的进展受到高时间分辨率成像需求的阻碍,这种成像能解析跳动心脏中产生的血流剖面。为填补这一空白,我们提出一种分析斑马鱼发育中心脏的壁动力学、流场和壁面剪切应力的方法。该方法结合了实时共聚焦成像和计算流体动力学,以克服与发育中心脏血流实时成像相关的困难。为举例说明该方法的适用性,我们讨论了瓣膜形成开始时心内膜细胞感知到的血流动力学频率成分,以及壁面剪切应力的基频如何代表心内膜、心脏瓣膜前体细胞的独特机械信号。